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Engineer Change.

e Announcement
e Logistic Regression

e Linear Regression



UCLA Announcements

Engineer Change.

e 5:00 pm PST, Jan. 29: Weekly Quiz 4 released on Gradescope.
e 11:59 pm PST, Jan. 31 (Sunday): Weekly quiz 4 closed on Gradescope!
o Start the quiz before 11:00 pm PST, Jan. 31 to have the full 60-minute time
e Problem set 1 released on CCLE, submission on Gradescope.
o Please assign pages of your submission with corresponding problem set outline
items on GradeScope.
o You do not need to submit code, only the results required by the problem set
o Due on TODAY 11:59pm PST, Jan. 29 (Friday)
e Problem set 2 expected to be released on CCLE, submission on Gradescope.
o Due ontwo week later, 11:59pm PST, Feb. 12 (Friday)



UCLA About Quiz 4

Engineer Change.

Quiz release date and time: Jan 29, 2021 (Friday) 05:00 PM PST
Quiz due/close date and time: Jan 31, 2021 (Sunday) 11:59 PM PST
You will have up to 60 minutes to take this exam. — Start before 11:00 PM Sunday
You can find the exam entry named "Week 4 Quiz" on GradeScope.
Topics: Logistic Regression, Linear Regression, Gradient Descent
Question Types
o True/false, multiple choices
Some light calculations are expected. Some scratch paper and one scientific calculator
(physical or online) are recommended for preparation.



UCLA Today'’s topic

Engineer Change.

Logistic Regression

Sigmoid Function— Classification
Probability of Y (Discrete Labels)

( Maximum |
Gradient +|_ Likelihood
Descent /
. . . . // 4 )
Linear combination / weighted / Least Square
sum of features ,/ L )

Predicted Value Y Regression
(Continuous)

Linear Regression




UCLA  |ogistic Regression: Example Question

Engineer Change.

We are given a data set consisting of the following
experiment. Well, the dataset is a little bit small. (O_o)

The height and weight of 3 people were recorded at the

beginning of each person’s 65th birthday. At exactly one (:'i'ﬁ::) V‘Eﬁ;ﬁ;‘ t e

year after each person’s 65th birthday the vital status was

recorded to be either alive or deceased. 60 155 Deceased
64 135 Alive

Our end goal is to use logistic regression to predict the

probability that a person’s life expectancy is at least 66 73 170 Alive
years given their age of 65, initial vital status of alive,

height, and weight (but we won’t go that far here).

The data is given in the following table on the right.



UCLA | ogistic Regression: Example Question

Step 1: State the log-likelihood function.

Height Weight Vital Status
(inches) (lbs)
60 155 Deceased
64 135 Alive

73 170 Alive



UCLA | ogistic Regression: Example Question

Step 1: State the log-likelihood function.

Answer:
a; = —b — 155w; — 60wy !-Ieight Weight Vital Status
(inches) (bs)
oy = —b — 135w, — 64w, 60 155 Deceased
64 135 Alive
O3 — —b — 170’(1}1 - 73w2
73 170 Alive

1 1 1
L=1 1— [ [
og( 1+ea1) + og(1+ea2) + 09(1+ea3)



UCLA

Engineer Change.

Logistic Regression: Example Question

Step 2: State the gradients for each parameter.

Height Weight Vital Status
(inches) (lbs)
60 155 Deceased
64 135 Alive

73 170 Alive



UCLA | ogistic Regression: Example Question

Engineer Change.

Step 2: State the gradients for each parameter.

Answer:
1 1 1
L=1 1— l l
og( 1—|—ea1>+ og<1+ea2>+ 09<1+ea3>
e*2 exs
=—-1.0 —1.0-— —-1.0.-—
Ve 1—|—e0‘1+ 1—|—e0‘2+ 1+ e
e*2 e
Vo, = —155.0- + —135.0- — + —170.0 - —
1+e 1+e 1+ eos
e*? ex3
V., = —60 + —64.0 - — + —-73.0-—
14e® 14 e 1 +-&8s

Height Weight Vital Status
(inches) (lbs)
60 155 Deceased
64 135 Alive
73 170 Alive

o = —b— 155’(1]1 — 60’11]2

O = —b— 13511)1 - 64”[1)2

O3 = —b— 170101 — 731,02



UCLA

Engineer Change.

Logistic Regression:

Example Question

Step 3: Give the Hessian Matrix (Optional)

Height Weight Vital Status
(inches) (Ibs)
60 155 Deceased
64 135 Alive
73 170 Alive



UCLA

Logistic Regression: Example Question

Engineer Change.
a1 ex2 e3
. . . 1.0 =Ll o G el =T =
Step 3: Give the Hessian Matrix (1+e)® (1+e2)® (1+eo)?
By = | 158,00 sl es® b 485100108 oo e Iq0f s L0 s
(1+e) (1+e) (1+e%)
ol a2 23
—60-—1.0-——— + —64.0- —1.0 - ——— + —73.0- —1.0 - ———
L (14ex)? (14 eo2)? (14 e3)?
V,=-10- b10. - 0. 101550 —— & 4 1.0--135.0-—— % 410 -170.0-—— %
P T T e U T e 1+ eos (L+e) (1+e22) (1+e%)
2 e H, = | -156.0. ~155.0 L _1350.-135.0 L _1700--1700 e
o= | Z155.0. —155.0 - —— " 4 _135.0.-135.0 . —— 4 _170.0.-170.0. — "
Vi = —155.0- g+ 1350 — o 1700 — (1+ o) (14 oo2)? (1+ o)
ea1 eaz ea3
1 2 003 —60 - —155.0 - ———— + —64.0- —135.0 - ——— + —73.0- —170.0 - ————
Vo, = —60 - Lo + —64.0- — T +—-73.0- = L (1+ex)? (1+e=)? (1 +e)?
e e e )
aq (o723 a3
~10: =60 -~ + ~10- 640 _(14?42)2 e =730 _(pf—s)?
ea1 e e
a1 (e%] Q3
Hy, = |-155.0. —60 ——2 + —135.0. —64.0 - ——— + —170.0- —73.0. ———
(1+em) (1+e22) (1+ex)
—60 - —60 - ——— + —64.0- —64.0- ——— + —73.0- —73.0 ————
I (1+en)? (1+en)’ (1+e)’




UCLA

YLLA - Logistic Regression: Example Question

Step 4: Assuming an initial guess of 0.25 for each
parameter, write python code for finding the values of

the parameters after 2 iterations using the Newton
Raphson method.

b = 1.1346728128592689
wy = —2.4878423877892759

wo = 3.8192554544178936

Height
(inches)

60
64

73

Weight Vital Status
(tbs)
155 Deceased
135 Alive
170 Alive



UCLA Closed form: LR + Regularization

e Model
1

1+e X8

y=o(X)=

e Original Objective
1
J(B) === (viwi B —log (1 + exp{a] 5}))
e | 2-Regularized Objective

J(B) = —% > (vixi B —log (1 + exp{z] B})) + A Z B;

)



UCLA Sigmoid: Calculus Cheatsheet

1

T
h9( ) (9 ) 1+6_9T$
where
(2) = —
g 1+e
; d |
gl = dz 1+e*
1 .
- (14e) ( )




UCLA Logistic Regression: Likelihood

Engineer Change.

Assuming that the m training examples were generated independently, we
can then write down the likelihood of the parameters as

Ply=1|z:0) = he(z) L) = py]X;0)

Ply=0]z;0) = 1 he(2) = Hp(y(i) | 2. 9)
p(y | 2;6) = (ho(2))” (1 = ho(a))' ™ Z

(he(x(i)»y(i) (1 B h@(x(i)»

I
s

1

o~
Il

As before, it will be easier to maximize the log likelihood:

((0) = logL(0)

= 3y log h(2®) + (1 — y) log(1 — h(z))
1=1




UCLA Logistic Regression: Multiclass Case*

Engineer Change.

Data [

Input Features

Model ! Logistic
Collection Regression
! Model 1

Logistic
Regression
Model 2

Logistic
Regression
Model 3

Logistic
Regression
Model 4

Predictions ED

Cross-entropy Loss

Label
L1
(truth)




UCLA Linear Regression: Model

Engineer Change.

e Linear model to predict value of a variable y using features x

y=x'B =201 +x282+ -+ 1,0,

e Least Square Estimation

1

J(B) = - (XB-y)"(XB-y)
e Closed form solution

B=(X"X)"'xTy



UCLA Linear Regression: Close-Form

(X8 - )" (X8~ y)

Closed form solution IB — (XTX)_lXTy

Least Square Estimation J(,B) —



UCLA Linear Regression: Example

e A ballis rolled down a hallway and its position is recorded at five different

times. Use the table shown below to calculate
o Weights
o Predicted position at each given time and at time 12 seconds

Time (s) Position (m)
1 9
2 12
4 17
6 21

8 26



UCLA Linear Regression: Example

Engineer Change.

Step 1: Question

e What are XandY variables?

Time (s) Position (m)
1 9
e What are the parameters for our problem? 2 12
4 17
e (Calculating parameters 6 21

8 26



Engineer Change.

UCLA Linear Regression: Example

Step 1: Calculate Weights

e What are Xand Y variables?

_ - Time (s) Position (m)
o Time (X) and Position(Y)
1 9
e What are the parameters for our problem? 2 12
o A, :Time 4. lIntercept
51 Bo P 4 17
e C(Calculating parameters 6 21

° B=(XTx)1xTy : 2



UCLA Linear Regression: Example

Engineer Change.

Let’s calculate on BOARD!

(1 1] KN Time (s) Position (m)
1 2 12 1 9
X =11 4 y= |17
1 6 21 2 12
_1 8_ _26_ 4 17
6 21

XT'x =7 (XTx)'=2

~ 8 26
Xty=?  p=(xTX)"'XxTy=?



UCLA Linear Regression: Example

Engineer Change.

Step 2: Apply your model and predict

e Plugtime values into linear regression equation Time (s) Position (m)
N 1 9
y = 2.378x + 7.012
2 12
e Predicted value at time =12 secs
gz = 12) = 2.378 x 12 + 7.012 = 35.548 4 17
6 21
e Matrix form to predict all other positions
8 26

g=Xp

12 35.55



UCLA Linear Regression: Example

Engineer Change.

Plot: Check your model

Time (s) Position (m)
(1 1 [ 9.390 1 9
) 1 2 - 012 11.768 2 12
g= |1 4| |y 5g| = [16.524 . .
1 6 21.280 ‘ ~
1 8 26.036

8 26



UCLA Linear Regression: Example

Engineer Change.

Plot: Check your model

30+

Time (s) Position (m)
1 9
20+
2 12
p =
10+ 4 17
6 21
0 1 L] 1 L] | J 8 26
0 2 4 6 8 10




UCLA  Linear Regression: Underfit & Overfit

Engineer Change.

e What is overfitting and underfitting in linear regression? — This topic will be

discussed later.
o How to avoid overfitting?

v

Underfitting Just right! overfitting



UCLA Bias vs Variance: Example

Engineer Change.

Linear Regression Decision Tree (Week 2)

g 3
& &
Size Size Size !
O + 61 0o + 01z + 022 0o + 01 + O22% + O32° + O,2*
High bias “Just right” High variance §
(underﬁt) (Overflt) Complexity
[ ] ® e ° L
9 o L



UCLA

Engineer Change.

Bias vs Variance: Example

Price

1. he(z) =0+ 61z
2. hg(z) =6y + 01z + B2
3. he(z) =6+ 601z + -+ 0323

10. hg(.’L‘) =6y+bz+---+ 0101‘10

Size Size
0()—{-01.’17 0()+01:F+92(1'2
High bias “Just right”

(underfit)

Price

Size
0o + 0, + G2 + 0323 + 0,2

High variance
(overfit)

Low High
Variance Variance st
Underfitting X
X
High
Bias
Truth

Low @

Bias

Overfitting



UCLA Closed form: LR + Regularization

e Model
Jg=x'B =181+ 2282+ -+ 1,5,

e Original Objective

| ] o
min J(8) = 3 3_(a"8— )

e L2-Regularized Objective

. 1 A
min J(8) = 3 (@8- + 51I8|I



UCLA

T chence. Closed form: LR + Regularization
5 2J(8) OX |18l
_ T
min J(3) = §;<w%—y>2+§u@u2—» o8 ;*’”(”3 B-v+ =55
9I(B) _ v

=> z(@"B-y)+ )8

1=1

B



UCLA |inear Regression: Probabilistic Interpretation

Engineer Change.

Likelihood of one training sample (z,,,yx)

1 _ lyn—(0g+612n)]>
(& 202

p(yn|xn§ 0) = N(90 + 01z, 0'2) =
2mo
LL(0) =log P(D)
N
= log [ ] p(vnlzn) = Z 108 p(Yn|Tn)

n=1

B USRS

= _2}7 [y — (B0 + 612,)]2 — glogcr2 — Nlog v2m

:__{ 22 — (6o + 012,)]? + Nlog o? }+const
o

Maximize over 6y and 6,

MLE = Least

max log P(D) < min Z[yn — (60 + O12,)2 ~—ro Square Error!



UCLA Gradient Descent

Engineer Change.

2.001 ' -~ » ,,@‘Q W\ ==

i O VOMNSSZEE I
175 | X a1 OO LRSS ONG
Ly : o ‘9‘9‘3\3 NI

150 | /|

125 | A i i
z100] |

]

Local Minima o

Global Minima

Saddle Point



UCLA Batch vs Stochastic Gradient Descent

Engineer Change.

Algorithm 1 Gradient descent Algorithm 2 Stochastic Gradient descent
1: 8 < 0. 1: 6 < 0.
2: for epoch =1...T do 2: for epoch =1...T do domiy choosi
3 0« 60-nVJ() 3 i for (my) € Ddo i Ky ol
_ I R v SN (7 a training sample
4: end for % UARCEN)
5 return 0 5. end for
6: end for
7: return 0
Algorithm 2 Gradient Descent (J) Algorithm 3 Stochastic Gradient Descent (J)
1:. 1+ 0 1: t<0
. Initialize §(®) : Initialize 6(©)
repeat : repeat

Randomly choose a training a sample x;
Compute its contribution to the gradient g; = (27 0® — y,)x;

2
3
VJIO®) = XTX00 — XTy =3 (2T0®) — y,)z,, .
6 O0+D g g,
;
8
9

0+ — 0 —pv.y(eM)
t—t+1

until convergence

: Return final value of @

t+—t+1
: until convergence
: Return final value of 8

Q@ N @k (wn




UCLA Batch / Stochastic / Mini-Batch

Engineer Change.

381 g _m Stochastic

3.6 +—— Mini-batch |
3.4} | == Batch i

Hl 3.2}
3.0F

2.8 |

2.6

2.4
2:5




UCLA | ogistic Regression VS Linear Regression

Engineer Change.

Logistic Regression

Sigmoid Function—
Probability of Y

1

Linear combination / weighted
sum of features

Classification J

(Discrete Labels)

-

Maximum
Likelihood

~

/ -

Least Square

J

Predicted Value Y H

Regression
(Continuous)

Linear Regression



UCLA * Logistic Regression: Convergence?

Engineer Change.

e True/False: Logistic regression cannot converge on a linearly separable dataset.

1.00~




Samueli
UCLA Computer Science

Thank you!

Q&A



