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UCLA Roadmap

Engineer Change.

e Course Logistics
e Math Prep: Calculus, linear algebra, probability and optimization
o Q&A



UCLA Course Information & Resources

Engineer Change.

e Course schedule and logistics

o Syllabus (tentative) on CCLE

o Logistics discussed in the first lecture (Week 1, Monday)
e CCLE

o Slides, lecture recordings, and other private course materials
e Online forum (Campuswire)

o Link: https://campuswire.com/p/GB5E561C3 Passcode: 3428

o Slides, QA and chat rooms.

o Ifyou have any questions, you may DM me on Campuswire or write me emails.
e GradeScope

o Submissions of problem set (total 4) and quizzes

o Final exam




UCLA Course logistics

Engineer Change.

e Office hours & Zoom links (time in PST)
o  Sriram Sankararaman (sriram@cs.ucla.edu) Wednesday 3:00-4:00pm @Zoom

|:> o Junheng Hao (haojh.ucla@gmail.com) Mondays 3:00-5:00 pm @Zoom
o Danfeng Guo (lyleguo@ucla.edu) Tuesdays 4:00pm-6:00pm @Zoom
o Andrei Storozhenko (storozhenko@cs.ucla.edu) Tuesdays & Thursdays 11:00-12:00 am
@Zoom

e Discussion 1C by Junheng Hao:
o Time: 12-1:50 pm, Fridays.
o Slides are posted on: https:/www.haojunheng.com/teaching/cs146-winter21/
o Recordings are posted on CCLE.

e Junheng’s Zoom Link:
o https://ucla.zoom.us/j/96240702917?pwd=0zFyWDZIYWpjNy9BSHI50FMyNU1idz09

Note: You can attend any discussion session (honestly they are at the same time).



UCLA Course Grading

Engineer Change.

e Problem Sets: 50%
o Total 4 problem sets: Math/conceptual questions + programming tasks
o No late submissions

e Weekly Quizzes: 30%

o Math quiz on Week 1, weekly quizzes on Week 2-9
o Lowest quiz score dropped

o  One-hour time for completion once the quiz starts

e Final Exam: 20%

o Scheduled on March 15

o All material covered, open book
o  Email to inform and confirm with both Prof. Sankararaman and your TA, for any accommodation

approved by CAE

e Default grade cutoff
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Reminder: Daylight saving time 2021 in California
will begin at 2:00 AM on Sunday, March 14!



UCLA Yes, all online!

e Asrequired by UCLA chancellor office, CS M146 is entirely online this quarter.
o

All teaching activities (lectures, discussion sessions, office hours) will be held virtually
through Zoom.

Please DO NOT share the zoom links outside!

e Please DO NOT enter the meeting room outside the regular lectures, office hours and
discussion time!
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UCLA Other Questions?

Engineer Change.

Enrollment problems on myUCLA
PTE

Grading option

CS145 and/or CS146

Need some help? Check here!
https://www.studentincrisis.ucla.edu/Portals/36/Documents/redfolder.pdf




UCLA About TA (Myself)

Engineer Change.

e Fourth-year CS Ph.D. candidate
UCLA Advisors: Yizhou Sun, Wei Wang (UCLA ScAi
Institute, UCLA Data Mining Group)

e Past work experiences: @NEC Labs, @Amazon, @IBM
Research Al

e Research interests: Knowledge Graphs, Graph mining,
NLP, Bioinformatics, etc.

e Hobbies: Languages (beginner for Spanish and
German), tennis, ...

e More about myself: https:/www.haojunheng.com/




UCLA About My Research

Engineer Change.

- Foundational to knowledge-driven AI systems
- Enable many downstream applications (NLP tasks, Recommender, Bioinformatics, etc)
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UCLA Announcements

Engineer Change.

6200 M ,jﬁ!\‘ Cé
° ﬁ*@gam,_:lﬁ.n_? Math quiz released on Gradescope.

e 11:59pm, Jan. 10 (Sunday): Math quiz closed on Gradescope!

e Jan. 15 (expected): Problem set 1 released on campuswire/CCLE, submission on
Gradescope.

Other deadline reminders (Problem sets, Quizzes, etc) will be announced in class and
Campuswire, as well as my discussion webpage.



UCLA Machine Learning: Math Essentials

Engineer Change.

“Machine learning is part of both statistics and
computer science.”

-- I don’t know who said that.



UCLA

Engineer Change.

Math Review: Probability

e Checklist:

Properties of probability

Probability spaces (discrete/continuous)
Probability distributions (discrete/continuous)
Random variables

Multivariate probability distributions

Marginal probability and conditional probability
Expectation, variance, covariance

Rules of probability

Independence and Bayes rule




UCLA Math Review: Lln/e&lymge—bra

Engineer Change.

[ A
b\,
e Checklist:
o Basiccalculus (y==< el
o Gradient calculationinmatrix format 2



UCLA Math Review: Linear Algebra

Engineer Change.

e Checklist:
o Vector, matrix
Norm
Multiplication
Useful (special) matrices
Rank of a matrix
Matrix inverse
Eigenvalues and eigenvectors

O O O O O O



UCLA Math Review: Optimization ™

Engineer Change.

e Checklist:
o Convex set and convex functions
o Gradients
o Gradient descent &
o (For SVM) Quadratic problem and dual problem, duality, KKT condition. 1



UCLA Math Review: Reading List

Engineer Change.

From the website: http://web.cs.ucla.edu/~sriram/courses/cmi146.winter-2019/html/index.html (Details in
the links below)

e Review of probability
o Link 1: http://cs229.stanford.edu/section/cs229-prob.pdf

o Link 2: https://www.cs.princeton.edu/courses/archive/spring07/cos424/scribe notes/0208.pdf

e Linear Algebra
o Link 2: http://cs229.stanford.edu/section/cs229-linalg.pdf

e Optimization
o Link 1: http://cs229.stanford.edu/section/cs229-cvxopt.pdf
o Link 2: http://cs229.stanford.edu/section/cs229-cvxopt2.pdf

e Machine Learning Math Essentials by Jeff Howbert from Washington UK/
o  Link: http://courses.washington.edu/css490/2012.Winter/lecture slides/02 math essentials.pdf



UCLA About Math Quiz (Week 1)

Engineer Change.

Notification: Campuswire Post#12.

You will have up to 60 minutes to take this exam.

You can find the exam entry named "Week 1 Math Quiz" on GradeScope.

There are in total 10 questions with types of true/false and multiple choices. Note that for
multiple-choice questions, it is possible to have one single correct answer and multiple correct
answers (select all that apply).

e Quizrelease date and time: Jan 08, 2021 (Friday) 05:00 PM PST

Quiz due/close date and time: Jan 10, 2021 (Sunday) 11:59 PM PST



UCLA Practice Exercise 1

Engineer Change.

e Bayes Theorem
o A patient goes to see a doctor. The doctor performs a test with 99 percent
reliability, that is, 99 percent of people who are sick test positive and 99 percent of
the healthy people test negative.
o The doctor knows that only 1 percent of the people in the country are sick

o Ifthe patient tests positive, what are the chances the patient is sick? Is it 99%?

B)
- s e pu )
A .
- hhs o fa&i&h@ toek /Q(A 3) -

V
W = 5///

0.0148

\



UCLA Practice Exercise 1 (Answer)

Engineer Change.

e Bayes Theorem
o 99 percent of people who are sick test positive and 99 percent of the healthy
people test negative. Only 1 percent of the people in the country are sick.
If the patient tests positive, what are the chances the patient is sick?
o Further question: What is the chance of a false positive result?
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UCLA Practice Exercise 2

Engineer Change.

e Matrix Rank
e Whatis the rank of following matrix? Are they non-singular?
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UCLA Practice Exercise 2: Answer

Engineer Change.

e Matrix Rank
What is the rank of following matrix? Are they non-singular?

10 1 2 1 2
A=[2 1 2] B=|1 0 1
0 -1 4 1 4

rank(A)=3, rank(B)=2
What about the rank of the matrix B+mI (I is identity matrix)?



UCLA Practice Exercise 3

Engineer Change.

e Hessian matrix Zﬁ? 12 Y
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UCLA Practice Exercise 3: Answer

Engineer Change.

e Hessian matrix
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Note: The Hessian matrix is a symmetric matrix, since the hypothesis of continuity of the second derivatives
implies that the order of differentiation does not matter (Schwarz's theorem).




UCLA Practice Exercise 4 (Link)

Engineer Change.

e Calculus: Chain rule = Later used in Neural Networks! 7(/)
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UCLA What’s next?

Engineer Change.

e In next week’s discussion, we will discuss:
o Materials in the first 2 weeks: Decision tree, KNN and linear classification
o Programming prep: Python, Google Colab, some useful packages (numpy,
scikit-learn, matplotlib, etc)
e Useful resources for programming resources
o Python/Numpy/Matplotlib tutorial:
https://cs231n.github.io/python-numpy-tutorial/
o Scikit-learn: https://scikit-learn.org/stable/tutorial/index.html




Samueli
UCLA Computer Science

Thank you!

Q&A



Samueli
UCLA Computer Science

CS M146 Discussion: Week 2
Decision Tree, Nearest Neighbors, ML Pipeline,
Programming Prep

Junheng Hao
Friday, 01/15/2021



UCLA Roadmap

Engineer Change.

e Announcement
e Lecture Review

e Programming Prep for Problem Sets



UCLA Announcements

Engineer Change.

e 5:00pm PST, Jan. 15: Weekly quiz 2 released on Gradescope.
e 11:59pm PST, Jan. 17 (Sunday): Weekly quiz 2 closed on Gradescope!
o Start the quiz before 11:00pm PST, Jan. 17 to have the full 60-minute time
e 5:00pm, Jan. 15: Problem set 1 released on campuswire/CCLE, submission on
Gradescope.
o Please assign pages of your submission with corresponding problem set outline
items on GradeScope.
o You do not need to submit code, only the results required by the problem set
o Dueon 11:59pm PST, Jan. 29 (Friday)
e Thereis no class on Jan. 18 (Monday), in observance of Martin Luther King Jr. Day.



UCLA About Quiz 2

Engineer Change.

=TS
Quiz release date and time%&n:ﬁaf, 2021 (Friday) 05:00 PM PST
Quiz due/close date and time: MZOZ:I. (Sunday) 11:59 PM PST
You will have up to 60 minutes 1o take this exam. — Start before 11:00 PM Sunday
You can find the exam entry named "Week 2 Quiz" on GradeScope.
Topics: Decision Tree, Nearest Neighbors, General machine learning basics and pipeline
Question Types
o True/false, multiple choices, and auto-graded short answers (fill blanks)
o Some questions may include several subquestions.
Some light calculations are expected. Some scratch paper and one scientific calculator
(physical or online) are recommended for preparation.
More Info: https://campuswire.com/c/GB5E561C3/feed/57




UCLA Part I

Engineer Change.

Lecture Review
Decision Tree, Nearest Neighbors, ML Pipelines



UCLA Decision Tree

Engineer Change.

e Decision Tree Classification: From data to model

[fo (453~

Outlook | Temperature ~ Humidity ~ Windy | Play?

sunny hot high false No

sunny hot high true No @

overcast = hot high false Yes e

rain mild high false Yes sufiny '

rain cool normal false Yes overcast o

rain cool normal true No » |

overcast ~ cool normal true Yes @ -

sunny mild high false No @
sunny cool normal false Yes \ \
rain mild normal false  Yes high faornd e Tee
sunny mild normal true Yes ﬁ * ‘ *
overcast  mild high true Yes

overcast  hot normal false Yes

rain mild high true No




UCLA Decision Tree: Takeaway

Engineer Change.

e Choosing the Splitting Attribute

e At each node, available attributes are evaluated on the basis of separating
the classes of the training examples.

e A goodness function (information measurement) is used for this purpose:

o Information Gain
o Gain Ratio*
o Gini Index*



UCLA Decision Tree: Attribute Selection

Engineer Change.

e Which is the best attribute?

o The one which will result in the smallest tree

o Heuristic: choose the attribute that produces the “purest” nodes
e Popular impurity criterion: information gain

o Information gain increases with the average purity of the subsets that an
attribute produces

e Strategy: choose attribute that results in greatest information gain



UCLA Decision Tree: Entropy of Random Variable

Engineer Change.
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UCLA Decision Tree: Attribute Selection

Engineer Change.

e Information in a split with x items of one class, y items of the second class

info([x, y]) = entropy( 2 ! L
X+y X+Yy

X X y

@ S




Decision Tree: Example for Practice
UCLA ° (14 ) €¢ b3
Attribute: “Outlook” = “Sunny

e “Outlook” =“Sunny”: 2 and 3 split

info([2,3]) = entropy(2/5,3/5) = —%log(é) - %log(%) =0.971 bits

__r ' -
€s €
yCS e yCS
)1(io pEs yCS
no = ):10
€
no yes no




Decision Tree: Example for Practice

UCLA Attribute: “Outlook” = “Overcast”

Engineer Change.

e “Outlook” = “Overcast”: 4/0 split
Note: log(0) is not defined, but

info([4,0]) = entropy(1,0) =—1log(1)|- Olog(O)\: Obits we evaluate 0*log(0) as zero.

outlook

overcast rainy

Y
es es
yes yes y‘es
31(10 yes yCS
no = }IIIO
€S
no y no




Decision Tree: Example for Practice
UCLA ° €€ ” €¢ M b}/
Attribute: “Outlook™ = “Rainy

e “Outlook” = “Rainy”:

info([3,2]) = entropy(3/5,2/5) = —glog(%) — %log(%) =0.971 bits

overcast rainy

es es
no yes YCS
no Jes no
yes
no no




UCLA Decision Tree: Example for Practice
maneercrense. - EXP@Cted Information of Attribute “Outlook™

Expected information for attribute:

info([3,2],[4,01,[3,2]) = (5/14)x 0.971+ (4/14)x 0+ (5/14)x 0.971

——

0.693 bits



UCLA Decision Tree: Example for Practice
Compute Information Gain

Information gain:
(information before split) — (information after split)

j
gain(" Outlook") = in- info([2,3],[4.01,[3,2]) = 0.940 - 0.693

=0.247 bits

Information gain for attributes from all weather data:

gain("Outlook") = 0.247 bits
gain("Temperature") = 0.029 bits
gain("Humidity") = 0.152 bits
gain(" Windy") = 0.048 bits



UCLA Decision Tre?: Example for F.’ractice
Engineer Change. Contlnue tO Spl.lt

nny

hot | mild cool




Decision Tree: Example for Practice
UCLA Final Tree

outlook

high normal

no ‘ ’ yes

‘ yes ‘ ‘ no ‘

« Note: Not all leaves need to be pure. Sometimes identical instances have
different classes.
« Splitting can stop when data can’t be split any further.



UCLA Decision Tree: Visual Tutorials

e Demo links

o http://www.r2d3.us/visual-intro-to- L
: : | —
machine-learning-part-1/ 2 M. L
o http://explained.ai/decision-tree-viz/ ul . L
la M ||..‘ \
l h. ' 1..
..... ® : '
. ® ° ‘ ’ 3
e [ ] . ) . .



UCLA KNN

Engineer Change.

e C(lassify an unknown example with the most common class among K nearest
examples
o “Tell me who your neighbors are, and I'll tell you who you are”
e Example

Classify as sea bass



UCLA KNN: Multiple Classes

e Easytoimplement for multiple classes

e ExampleforK=5
o 3 fish species: salmon, sea bass, eel
o 3seabass, 1 eel, 1 salmon — classify as sea bass
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UCLA KNN: How to Choose K?

Engineer Change.

e Intheory, if infinite number of samples available, the larger K, the better
classification result you’ll get.
e Caveat: all K neighbors have to be close =R

o Possible when infinite # samples available
o Impossible in practice since # samples if finite

e Should we “tune” K on training data?
o Underfitting = Overfitting

e K=1- sensitive to “noise” (e.g. see right)

noise

K=1:)



UCLA KNN: How to Choose K?

Engineer Change.

1 NN 3 NN
A & 2 A )
o ©® noisy sample e ® 1 0
® %A/Q ® L o
® @ ® ®
e i > @
® o o . ® o 8
@ 2 - ol
m " g *a ® g
ol "=
= = m & .
every example in the blue every example in the blue
shaded area will be shaded area will be classified

misclassified as the blue class correctly as the red class



UCLA KNN: How to Choose K?

Engineer Change.

e Larger K gives smoother boundaries, better for generalization

o Only if locality is preserved

o Ktoo large — looking at samples too far away that are not from the same class
e Can choose K through cross-validation

1-NN S5-NN 20-NN
K=1 K=15 ‘l{ 3 33 1 g /\M. \)q ] 5 § 3 3.
NN xStk s Jariad b [ 3 st
s 3%, ¢ /[ /' R ¢ SIS &5 7’.\;:?\’5_\’ Lt T'*E,?Lu? ”z}’;fr‘,"}*“ ey
WS ./ e Gt f Y A X AR RY | T g
N80, 2T o s g Sl W R TR B I S0 )
i /_i\;e\%n«’- : “' Tt 2 1s # ) RV Z.— n\ﬁ;w o Py /*‘)f, .
cP\Jy,g f)\%%‘\;\? 2(.4 E{_//-v:?\e:;,c.\ ‘ S Taigy?y ¥ iy "f/;‘/ﬁﬁ a9
0 g 5o / § g *y | op
s <_\ W yoilgt® { ) \
F / -
/ 2| |

Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

“ picture from R. Gutierrez-Osuna



UCLA KNN: Decision Boundary

Engineer Change.

e Voronoi diagram

decision boundary




UCLA KNN: Decision Boundary

Engineer Change.

e Decision boundaries are formed by a
subset of the Voronoi Diagram of the
training data

e Each line segment is equidistant
between two points of opposite class

e The more examples that are stored, the
more fragmented and complex the
decision boundaries can be.




UCLA KNN: Distance

Engineer Change.

e If we use Euclidean Distance to find the nearest neighbor:

D(a,b) = \/Z(ak — by)?
K

e FEuclidean distance treats each feature as equally important
e Sometimes, some features (or dimensions) may be much more
discriminative than other features




UCLA

Engineer Change.

KNN: Distance

Feature 1 gives the correct class: 1 or 2
Feature 2 gives irrelevant number from 100 to 200
Dataset: [1, 150], [2, 110]

Classify [1, 100]

e
D([IOO_ ’

{
b ([100_ ’

PR
1150,

Y

1110

) = /(1 -1)2 + (100 — 150)2 = 50

) =+/(1—2)% + (100 — 110)2 = 10.5

Use Euclidean distance can result in wrong classification
Dense Example can help solve this problem




UCLA KNN: Distance

e Decision boundary is inred, and is really wrong because:
o Feature 1 is discriminative, but its scale is small
o Feature gives no class information but its scale is large, which dominates distance

calculation
180g : : ; ; ,
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UCLA KNN: Feature Normalization

Engineer Change.

e Normalize features that makes them be in the same scale
e Different normalization approaches may reflect the result
e Linear scale the feature in range [0,1]:

ford — foman

fnew = fmax min
old
e Linear scale to 0 mean standard deviati -score):




UCLA (1. 4)  KNN: Feature Normalization

Engineer Change. /1\

° Res/ult comparison non-normalized vs normalized
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UCLA KNN: Feature Weighting

Engineer Change.

e Scale each feature by its importance for classification

D(a,b) = jz wi(ag = by)?
k

e Use prior/domain knowledge to set the weight w
e Use cross-validation to learn the weight w




UCLA KNN: Computational Complexity

e Suppose n examples with dimension d
e Complexity for KNN training?

e Complexity for kNN training? %@;76}20 / Wﬁ/m )
O  Foreach point to be classified:

o Complexity for computing distance to one example
o Complexity for computing distances to all examples
o Find k closest examples

e Is it expensive for a large number of queries?



UCLA KNN: Summary /[W—\

Engineer Change.

( px

e Advantages: . —=
o Can be applied to the data from any distribution
o The decision boundary is not necessarily to be linear \& o>
o Simple and Intuitive )
o Good Classification with large number of samples (ok
(00

e Disadvantages:
o Choosing k may be tricky
o Test stage is computationally expensive (= | My
m No training stage, time-consuming test stage
m Usually we can afford long training step but fast testing speed
o Need large number of examples for accuracy



UCLA ML Pipeline: Evaluation Your Mode

Engineer Change. Gl
(\ l(/_lL/IL/ (L - S

[y, 3

Training data (set) .
o N samples/instances: D™ = {(z1,y1), (z2,¥2), ", (BN YN} Legs £

@ They are used for learning h(-)
Test (evaluation) data

® M samples/instances: D™ = {(x1,y1), (T2,¥2)," -, (Tm,Ym)} ]
@ They are used for assessing how well A(-) will do in predicting an v
unseen x ¢ DTRAN —
- [ tost)
Development (or validation) data
oL samples/instances: DPFY = {(:L'l, yl)) (m27 y2)7 T (mb yL)} J__/

@ They are used to optimize hyperparameter(s).

Training data, validation and test data should not overlap! 2



UCLA

Engineer Change.

L
. o2 % ®  Cross Validation

/ 72

4

@ We split the training data into
K equal parts (termed folds or

splits). /ﬁ%h/(/é/’_)’( [ % 3 Y
o We use each part inturnasa ~ |

validation dataset and use the
others as a training dataset.

[ ]
@ We choose the hyperparameter T
[ ]

such that on average, the model
performing the best

Special case: when K = N, this will be leave-one-out (LOO).

K = 5: b-fold cross validation

run 1

run 2

run 3

run 4

run S

/%

AV (E=2)



UCLA  Analyze Your Model: Underfit or Overfit?

Engineer Change.

A

<
+

v

Predictive

Underfitting Overfitting
Error

Error on Test Data

Error on Training Data

Model Complexity

4>

Ideal Range
for Model Complexity



UCLA  Analyze Your Model: Underfit or Overfit?

Engineer Change.

e Another example on regression

Polynomial fit degree 1 Polynomial fit degree 4 Polynomial fit degree 20
Training error: 0.4 Training error: 0.14 Training error: 0.07
Generalization error: 0.42 Generalization error: 0.17 Generalization error: 2000

210+

20.51 ~

20.0

19.54

19.04

000 025 050 075 1.00 000 025 05 075 100
X X
Underfit Overfit




UCLA Analyze Decision Tree: Too simple or too complex?

Engineer Change.

Examples on Decision Tree
Another two concepts:
Model Bias & Variance

e Demo: [Link]

Variance

Error Rate

Complexity



Part 11

Programming Prep Guide



UCLA “Doit local”: Python & Jupyter Notebook

Engineer Change.

e Step 1: Install Anaconda (with Python 3.X and Jupyter Notebooks)

e Step 2: Try out Python in command line and open Jupyter Notebooks

e Step 3: Familiarize yourself with Python 3

e Step 4: Use Jupyter Notebooks for coding and writing together

e Step 5: Customize your Python environment and install Python packages

o Example packages: Numpy, Pandas, Matplotlib

Note: This slide is only intended for students who want to program on local desktop instead of Google Colab.



UCLA Where is your Python?

Engineer Change.

e Install Conda/Anaconda
o Conda:
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
o Anaconda: https://docs.anaconda.com/anaconda/install/mac-os/

e Install Jupyter Notebook from anaconda (this step may be skipped once Anaconda is
installed)

o Link: https://jupyter.org/install

o Command Line: conda install -c conda-forge notebook
e Check out Python and Jupyter notebook

o Command Line: python or ipython

o Version/Source: python --version or which python

o Open Jupyter Notebook: jupyter notebook (automatically into something URL like:
http://localhost:8888/tree)

Note: This slide is only intended for students who want to program on local desktop instead of Google Colab.



UCLA  Create customized Python environment

Engineer Change.

e Checklist:
o Create a customized virtual environment
o Activate/Deactivate your environment
o Install packages for your virtual environment
e Helpful links:
o Managing conda environment:
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environ
ments.html




UCLA A Program Notebook: Write and Code

Engineer Change.

e Apply both on Jupyter Notebook and Google Colab!

e Checklist:
o Identify Markdown cell and Code cell
o Learn how to use markdown and latex to input math formula
o Run Python code

e Markdown tutorial = It is a notebook interface!
o Checklist: paragraph, bold, italic, list, code (courier), math formula (in latex)
o Link: https://www.markdowntutorial.com/

e Latex — Itis for typing math symbols and equations!
o No need to install Tex or Mactex
o Cheatsheet: http://tug.ctan.org/info/undergradmath/undergradmath.pdf




UCLA Checklist: Python, Numpy, Pandas, Matplotlib

Engineer Change.

e Shown inthe demo
Python
o Datatypes and control flow
e Numpy
o Array and matrix
o Matrix operation
o Broadcasting
e Pandas
o Data load and export
o Dataframe operations
e Matplotlib
o Plot types, settings and output figure files
e Scikit-learn
o ML pipeline (data prep, model selection, train and development, evaluation)



UCLA Demo [Link]

Engineer Change.

e Google Colah: A starter guide
o Create and connect online codebook
o Run code and commands
o Save and output results
e Text cell
o Markdown and Latex
e Codecell

o Python
o  Numpy
o Pandas
o Matplotlib



Samueli
UCLA Computer Science

Thank you!

Q&A
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Perceptron, Linear Models, Optimization

Junheng Hao
Friday, 01/22/2021



UCLA Roadmap

Engineer Change.

e Announcement
e Perceptron & Linear Models

e Optimization, MLE



UCLA Announcements

Engineer Change.

e 5:00 pm PST, Jan. 22: Weekly Quiz 3 released on Gradescope.
e 11:59 pm PST, Jan. 24 (Sunday): Weekly quiz 3 closed on Gradescope!
o Start the quiz before 11:00 pm PST, Jan. 24 to have the full 60-minute time
e Problem set 1 released on campuswire/CCLE, submission on Gradescope.
o Please assign pages of your submission with corresponding problem set outline
items on GradeScope.
You do not need to submit code, only the results required by the problem set
Due on 11:59pm PST, Jan. 29 (Friday)



UCLA About Quiz 3

Engineer Change.

Quiz release date and time: Jan 22, 2021 (Friday) 05:00 PM PST
Quiz due/close date and time: Jan 24, 2021 (Sunday) 11:59 PM PST
You will have up to 60 minutes to take this exam. — Start before 11:00 PM Sunday
You can find the exam entry named "Week 3 Quiz" on GradeScope.
Topics: Perceptron, Linear Models
Questio es
o@@and auto=graded-short-answers (fill blanks)
o Some questions may include several subquestions.
Some light calculations are expected. Some scratch paper and one scientific calculator
(physical or online) are recommended for preparation.



UCLA *One more quiz of K-NN

Engineer Change.

e True/False: The training error of K-NN will be zero when K =1, irrespective of the

dataset.



UCLA  Math Reminder: Normal vector and plane

Engineer Change.

W
e A normal vector is a vector perpendicular to another object, such as a surface or plane.
—r
D AX By -M=2 - (AL
=2 (%/ 7)ﬁ/0/ J)
z
Let O(a, b, c) be a fixed point in the plane, Thusn - (r — b) = 0. In terms of coorl:linates, ti}s
P(x, y, z) an arbitrary point in the plane, and becomes
e =(A, B, C)th | to the pl If
| e 7 fi=( ) the normal to the plane \ﬁ(A,B,C)-(x—a,y—b,z—Q=0,)
Q g b = (a, b, c), r={x;y,2), )
V4 where n = (A, B, C). In other words, we get the
// the vector point-normal equation

— Ax—a)+B(y—-b)+C(z—c) = 0.

P 7 0P =r—b = (x-a,y-bz-c)
//_/__ﬂ,‘_-—v—]"ﬂ‘_’v\ y lies in the plane, and is perpendicular to n. fara plane;
z

— AxcBy+(z—mg

Credit: https://web.ma.utexas.edu/users/m408m/Display12-5-4.shtml #1= C A - Q - C )




Engineer Change.

UCLA  Math Reminder: Normal vector and plane

e A normal vector is a vector perpendicular to another object, such as a surface or plane.

As promised, we return the the question of finding the equation for a plane from the location of three points, say
O(x1, y1, 21), R(x3, y2, 22), S(x3, y3, 23)

The fact that the cross-product a X b is perpendicular to both a and b makes it very useful when dealing with normals
to planes.

Let

b=(x1,y1,21), T=(Xx2, Y2, 22), S={x3, ¥3, 23).

The vectors

— —
OR =r-b, 0SS =s-b,

then lie in the plane.. The normal to the plane is given by the
cross product n = (r — b) X (s — b). Once this normal has
been calculated, we can then use the point-normal form to
get the equation of the plane passing through Q, R, and §.




UCLA  Math Reminder: Normal vector and plane

Demo Calculation Example

@ (.72 R(-4% 2, 27
_ /
CR = (-2, 1, A= (2 Y ()
ﬂ: ("‘> 0 ;>
o A =




UCLA Perceptron: Overview

Engineer Change.

NMx ) "
X R :
\ - ® o
v = ()
e Instance (feature vectors): ¢ € RP \K e »
o Label: y € {-1,+1} o \

@ Model/Hypotheses: o % |® raresst
H = {h|lzp X—= {-1,+1},h(x) = sz'gn(zg=1 waxq +b)}. » - W,ﬁeﬁﬁ;?fzfmﬁf bso

" Learning goal: o h(:c) — represent a linear function

» Learn wy,...,wp,b. Iteratively solving one case at a time

» Parameters: wy,...,wp,b. e REPEAT

> w: weights, b: bias @ Pick a data point x,,

A e Compute a = w'x, using the current w
Q- [Z—) @ If ayy > 0, do nothing. Else,

/ / W W+ YnTn

— Q — @ UNTIL converged.




UCLA Perceptron: Convergence

Engineer Change.

e Iftraining data is not linearly separable, the algorithm does not converge.

e Ifthetraining data is linearly separable, the algorithm stops in a finite number of steps

(converges).

o Let {(x1,¥1), -, (®Nn,yn)} be a sequence of training examples such
that ||x,||]2 < R and label y, € {—1,+1}.

@ Suppose there exists a unit vector u € R? such that for some v > 0,
we have y,uTx, > ~.

@ Then the Perceptron algorithm will make at most 5—22 mistakes on the
training sequence.




UCLA Perceptron: Update (Geometry)

Engineer Change.
A
Predict Update K| X After




UCLA  perceptron: Connect to Neural Network

Engineer Change.

A Single Perceptron Multi-layer Neural Network

O 1)

f X =\<
Output
| b

Activation
Function

Inputs —

Input
Layer

wY
<«—— Hidden Layer —L Output Layer ———

Question: Can a single perceptron classify XOR data? How about 2-layer perceptrons?



UCLA Logistic Regression: Overview O1%)

Engineer Change.

b+w X =0 % s
Probability of a single training sample (z,,y,) _ .. o >

0
= | = 0\/0) —0),
Bt | B by W) = { hawp(2n) = o if yn=1 5

=1— hyp(xyn) =1—0(b+w'z,) otherwise

Compact expression, exploring that vy, is either 1 or 0

‘ a P(Yn|Tn; by w) wb mn@l_ wb(mn)

Log-likelihood of the wh

(20,0) = S {on o8 (o) + (1= ) Log[L — hupp(@n)]}

ining data D




UCLA Linear Models

Engineer Change.

e Compare: Decision Tree, Nearest Neighbors, Perceptron

Ground Truth:
Linear Boundary

Xz
0
|
Xy
0
|
— -

-2 -1 o 1 2 -2 -1 o 1 2
x ©
Ground Truth: & o W >emal
Non-Linear Boundary Al ]
% 4 & A & & % % 1 @
x,y b
Fitted Model: Fitted Model:

Linear Model Trees




UCLA Decision Boundary: Quiz

Engineer Change.

Suppose you train a logistic classifier hy(x) = g(6y + €1x; + 62x,)) Suppose
6y = 6,0, = 0,0, = —1.Which of the following figuresTepresents the decision boundary

found by yon.f/élassifier?

@0“'9{7{»)\?/6))/1)50 N

0 ©s- &

6__

OT

QY



UCLA Decision Boundary: Quiz

Engineer Change.

Suppose you train a logistic classifier hy(x) = g(6y + 61x; + 6,x,). Suppose
6y = 6,0, = 0,0, = —1.Which of the following figures represents the decision boundary
found by your classifier?

N
XZA XZA X2 uy=0n X2A y:l
y=1 y=0 y=0" y=1 6 6
N=1 y=0
6 21 T ;) > >



UCLA Unconstrained Optimization

Engineer Change.

e Convex Function and Convexity

e Closed-form solution A
2 79%)

e Gradient Descent

e Newton’s methods Y, X )

%Z}:%Z”gf_




UCLA Gradient Descent

Engineer Change.

w
Start at a random point fe)

Repeat
/. Determine a descent direction
7 -Choose a step size
Update
Until stopping criterion is satisfied

74 )= Where Will We Converge?

fiw) gw) Non-convex
o J ( 1/> Convex

* e W2 W Wy w

/
t;J‘ w w ‘:v‘ w

Any local minimum is a global minimum  Multiple local minima may exist




UCLA Newton’s Method (Optional)

Engineer Change.

Definition:

a?L(m)‘l OL(B)

opopT

new __ pold
o= - ( %

Apply Newton’s methods on single variable to find minima:

From single variable to Multivariate Newton-Raphson Method



UCLA Newton’s Method: Steps (Optional)

Engineer Change.

Initialize (0

Calculate Vf(x)

Calculate F(x)

Initialize stepn = 0 and start loops

a. Calculate Vf(a;(n))

b. Calculate F(a:(”))

c. Calculate [F(x(”))]_l

d. Update: :L,(n+1) . l,(n) - [F(;’L‘(n))]_l ) Vf(L(n))
e. Update:n=n-+1

5. Exit Loop

e



UCLA  Newton’s Method: Example (Optional)

Engineer Change.

:: [3’ _170]

x1,Ta,1r3) = (21 + 10x2)2 + 5(x1 — a:3)2 + (z2 — 2x3)4

Vfi(z®) = [5f of 8f] = [16, —144, 22]

Newton’s Method Ox1’ Oy’ Ows
Example in one step: e & f ?f |
6:21:? Ox 123:112 dx 12311?3 12 20 —10
F(CC(O)) - 8:1:828’;1 g:r{" 8:1:828fr1:3 - 20 22 —24
> Calculate Vf(z'") or ) o7y ~10 —24 48
> Calculate F(z(™) | Jzz0z  DOwdws Oz
> Update: (nt1) [F(z™)]} =] 0119 —0.079 —0.015
0.043 —0.015 0.023
> Update: n=n-+1 . ; ; ,
) = 20 _ [F(zN))1. v f(z©)




UCLA Maximum Likelihood Estimation

Engineer Change.

Definition: The maximum likelihood estimator (MLE) 9, is the value of 0
that maximizes L(6). min  ~Lig)

The log-likelihood function is defined by [(0) =log L(0). Its maximum
occurs at the same place as that of the likelihood function.

e Using logs simplifies mathemetical expressions (converts exponents to
products and products to sums)

@ Using logs helps with numerical stabilitity

The same is true of the likelihood function times any constant. Thus we
shall often drop constants in the likelihood function.



UCLA MLE: Logistic Regression

Engineer Change.

e Model

e Original Objective



UCLA MLE: Logistic Regression

Engineer Change.

1
hO(’L') a g(ng) = 1 + e—on7
where
() = —
9 1+ e2
d 1
/ _
g(z) = dz 1 +e*
1




UCLA MLE: Logistic Regression £

Engineer Change. —_—
A

/U

Assuming that the m training examples were generated independently, we
can then write down the likelihood of the parameters as

Ply=1|z;0) = hy(z) L) = p(F|X;0) Qﬁi—
SgiimE = L-la = TIrw®129;0) —

p(y |8 = (ho(2))" (1 = ho())' ™

=

t=1

- H (hg(x(i)))y(i) (1 B hg(I(i)))l_y(i)

=1

3

~.

? W} ) As before, it will be easier to maximize the log likelihood:
[
0 (o) # logL(®)

= 3 v log h(z™) + (1 — y) log(1 — h(z®
/)CC//@//U ;y gh(z™) + (1 —y'")log(1 — h(z™))



UCLA Constrained Optimization

Engineer Change.

e Lagrange Multiplier 7[”(/ 7)49 oot §§ 4\7

ot 2 | L) = fay) - Ag(@,9)
l

maximize f(z, y) VeyrL(z,y,A) =0 < {gv(”;yg)(i’%) = AVey9(z,y)
subject to: g(z,y) =0 y ’ y
QL) VIx) =) M Vg(x) < VFx) - MVg(x)=0.
k=1 k=1
e Considering multiple constraints " M /L
M
L(wlw",mn,)‘l:"'a}‘M) f L1, - 137,, ZAkgk L1,y - - 7mn)
n+M — L B

v:cl,...,:vn,/\l,...,)\M ‘C(wl’ ceey Ty, A1) )\M) =0 <= { Vf(X) Zk o )\k ng (X) =1
gi(x) =---=gmu(x)=0



UCLA Constrained Optimization

Engineer Change.

level sets

>0 :




UCLA Lagrange Multiplier ()

Engineer C hange.

e Example: 7ﬁ%7 - (\(‘7/ ///Z)WA/I- Jf(t)’ 7{5 - ’L
))mx Flas ) —Cc—l-y =

Constraint : g(x,y) = 2> +y* =1 A= 4—
G17%)- 'ty -] =0
2y /o &




UCLA | agrange Multiplier: Connect to SVM *

Engineer Change.

Original optimization problem:

L

MiNMizeyp  3W.W wbae st
(w.x;+b)y; > 1, Vj
Rewrite One Lagrange multiplier

Lagrangian:

20, Vj




UCLA What’s next?

Engineer Change.

e In next week’s discussion, we will discuss:
o Logistic Regression (Continued)
o Naive Bayes, Linear Regression (Planned)



Samueli
UCLA Computer Science

Thank you!

Q&A
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UCLA Roadmap

Engineer Change.

e Announcement
e Logistic Regression

e Linear Regression



UCLA Announcements

Engineer Change.

e 5:00 pm PST, Jan. 29: Weekly Quiz 4 released on Gradescope.
e 11:59 pm PST, Jan. 31 (Sunday): Weekly quiz 4 closed on Gradescope!
o Start the quiz before 11:00 pm PST, Jan. 31 to have the full 60-minute time
e Problem set 1 released on CCLE, submission on Gradescope.
o Please assign pages of your submission with corresponding problem set outline
items on GradeScope.
o You do not need to submit code, only the results required by the problem set
o Due on TODAY 11:59pm PST, Jan. 29 (Friday)
e Problem set 2 expected to be released on CCLE, submission on Gradescope.
o Due ontwo week later, 11:59pm PST, Feb. 12 (Friday)



UCLA About Quiz 4

Engineer Change.

Quiz release date and time: Jan 29, 2021 (Friday) 05:00 PM PST
Quiz due/close date and time: Jan 31, 2021 (Sunday) 11:59 PM PST
You will have up to 60 minutes to take this exam. — Start before 11:00 PM Sunday
You can find the exam entry named "Week 4 Quiz" on GradeScope.
Topics: Logistic Regression, Linear Regression, Gradient Descent
Question Types
o True/false, multiple choices
Some light calculations are expected. Some scratch paper and one scientific calculator
(physical or online) are recommended for preparation.



UCLA Today'’s topic

Engineer Change.

b
w R X € (0,))  Logistic Regression

_ WT X+ b Sigmoid Function— Classification
/la -~ T Probability of Y (Discrete Labels)
6( \L) ( Maximum )
(y\)=

Gradient K4 Likelihood
Descent //

Linear combination / weighted / Least Square
sum of features ! L Y,

Predicted Value Y Regression
(Continuous)

Linear Regression




UCLA  |ogistic Regression: Example Question

Engineer Change.

We are given a data set consisting of the following
experiment. Well, the dataset is a little bit small. (O_o)

The height and weight of 3 people were recorded at the
beginning of each person’s 65th birthday. At exactly one
year after each person’s 65th birthday the vital status was
recorded to be either alive or deceased.

Our end goal is to use logistic regression to predict the
probability that a person’s life expectancy is at least 66
years given their age of 65, initial vital status of alive,
height, and weight (but we won’t go that far here).

The data is given in the following table on the right.

Height
(inches)

Weight
(lbs)

60

155 Deceased

64 135 Alive

73 170 Alive




UCLA | ogistic Regression: Example Question

Step 1: State the log-likelihood function.

Height Weight Vital Status
(inches) (lbs)
60 155 Deceased
64 135 Alive

73 170 Alive



UCLA | ogistic Regression: Example Question

Engineer Change.

Step 1: State the log-likelihood function.

17: W(X(‘H//»)(r), + b

Answer:
. - Height Weight Vital Status
0 ~
bj\@: —b — 135w, — 64w, 60 155 Deceased (O
E (W - 64 135 Alive |
Q3 = —b— 17011)1 = 73’11)2
209 (4,73 170 Alive ]
1 i 1 a2
L= 1-— [ [
09( 1+ea1)+og<1+ea2>+ Og<1+ea3) 2‘/ aL Q/L_
= oW b

) W, 2W



UCLA

Engineer Change.

Logistic Regression: Example Question

Step 2: State the gradients for each parameter.

Height Weight Vital Status
(inches) (lbs)
60 155 Deceased
64 135 Alive

73 170 Alive



UCLA ic Regression: Example Question
[ Tap | oL ga gL 2%
0% 1535 T 28, 2b  ody b sl

Db~ ﬂl_\ PW

Step 2: State the gradlients for each parameter Q — Height Weight Vital Status
{) ‘ L \ J ) (inches) (lbs)

. T P

Answer: 4‘,] (te {2 Ay 1 155 Deceased
_ | 1 1 64 35 Alive (<
b=log({d g o9 1+e"2)+l£(1+e0‘3> |
- - ' / Alive

_, e
poﬁb (;XQ fb /@Qk &’\’C

—1.0-— I s - =X
1

(69} ~X3
41700 S

1+ e22 1 1+ e2s L@: —b— 135’(1)1 — 64’11)2

N2 ea3

. —73.0-—
14 ex 1+e°‘2+ 1+ eas

Q3 = —b— 170’11)1 = 73'11)2



UCLA  [ogistic Regression: Example Question

|
Step 3: Give the Hessian Matrix (Optional) [ | = < ( -+ Qd'
X )
— (v — ¢ "
~ ¥ — (+x)" = R
Height eight Vital Status
(inches) (Ibs)
l < ( , ) 60 155 Deceased
Q? [+ Qd\ 64 135 Alive
o, 73 170 Alive
X\



UCLA | ogistic Regression: Example Question

Engineer Change.
aq g a3
s . . T PO TS S~ K . O O, O, | -l
Step 3: Give the Hessian Matrix (1+e) (1+em2) (1+e2)
Hy = | _155.0--1.0- —“fi)a 418510 —3:0: —(lji)g 4 —170.0': 1. -—(H‘_’ g
el ez e’
(51 2 e &3
Ll i B A P B
I (1 +ex)* (1 + e22) (1 +e2)
e e T e e i el T e
Vb:'—l.O‘ 1+ea1 +—1.0‘—1+ea2 +"‘1.0"“1+eaa (1+eu1)2 (]_+e“2)2 (1+ea3)2
T — e e e%
@2 e Hosi = | <1850 =18500=— s8R 0ucfB Do e =190,0 «=10 0
Vi = =185.0+ T 4 —135.0- — 1 —170.0- — |:> ' (L+em)? (1+em) (1 +em)?
| 092 003 —B0+ 1550 ~——— + —64.0+ ~185:0° ——— + —730- =170,0- ——
Viy = =60 T+ 640~ + T30~ i (1+e) (1+em) (1+em)
ext e*? e
_1~0 - _60 N _m + _1-0 . _64‘0 N _m + _1 0 - _73~0 N _m
=31 @y a3
He, = | 1550 =60+ —— > + —135.0+ —64.0- ——>  + —170.0- ~73.0+ ———
(1+ex) (1 + ) (14 ex)
B0 Bl e B e = 7B T
i (1+ o)’ (1+e22)° (1+eos)?




UCLA | ogistic Regression: Example Question

Step 4: Assuming an initial guess of 0.25 for each
parameter, write python code for finding the values of

the parameters after 2 iterations using the Newton
Raphson method.

b = 1.1346728128592689
wy = —2.4878423877892759

wo = 3.8192554544178936

Height
(inches)

60
64

73

Weight Vital Status
(lbs)
155 Deceased
135 Alive
170 Alive



UCLA Closed form: LR + Regularization

er Change.

e Model P(dj:i\x) wi W, % +w, oy, - tW,

@):a( 1+e‘XT5£f

e Original Objective
1
J(B) === (wiw] B —log (1 + exp{] 5}))
e | 2-Regularized Objective

7)== (gl 8~ log (1 + expaT 5}) + A3 6

3



UCLA Sigmoid: Calculus Cheatsheet

1
ho(z) = g(67 1) = ——7,
1+60 ‘/\}TX‘(‘L :okS
where
1 _ - lO\\—“y
_ fo/ - (O»S)(‘ \3
90) = 17— g 1> J )
d 1
/ ==
g2} dz 1+e*
1 —
- (1+4e2) ( )




UCLA Logistic Regression: Likelihood

Engineer Change.

Assuming that the m training examples were generated independently, we
can then write down the likelihood of the parameters as

Py=1|z;0) = he(z) L) = p(7| X:0)

Ply=0|z;0) = 1— hy(x) = [[r@® |29;0)

2:0) = (ho(2))? (1 — ho(z))' ™ _
p(y| ) ( 9( )) ( 9( )) _ H(he( ))y (1_h9(x(2))) Yy

1=1

As before, it will be easier to maximize the log likelihood:

(0) = logL(H)




UCLA

Engineer Change.

Logistic Regression: Multiclass Case™
(e (] 002 )

Data [ Input Features n g} fﬂ"j (0 (. ¢0 ]
Model Logistic Logistic Logistic Logistic
Collection Regression Regression Regression Regression
Model 1 Model 2 Model 3 Model 4
0- — - 0.5 — 0
Predictions ED Ea )7 @9 Q4 2
Cross-entropy Loss (,Wt }"Wl’ hit p{ﬂj ‘ () 3
Label ’ ] ’ ‘ [ ]
L1 L2 L3 L4
(truth) ’(/ 0 O [ ] O




UCLA Linear Regression: Model

er Change.

=« 1)

e Linear model to predict value ofavarlableyusmgfeaturesx[g ([g 2 )

y=< 5=$151+$25Q+-'-+xpﬂpf/89

e Least Square Estimation 7 A

J(B) = g (X8 —y) (XB - v) iniz—“(ﬁ”%f
|

e Closed form solution

(M X (292
=(XTX@XTy XER

ORI
i SRS



UCLA Linear Regression: Close-Form

er Change.

Least Square Estimation J(3) = (Xg y) (X8 —v)
Closed form solution 13 . (XTX)—lXTy



UCLA Linear Regression: Example

e A ballis rolled down a hallway and its position is recorded at five different

times. Use the table shown below to calculate
o Weights
o Predicted position at each given time and at time 12 seconds

Time (s) Position (m)
1 9
2 12
4 17
6 21

8 26



UCLA Linear Regression: Example

Engineer Change.

Step 1: Question

e Whatare Xand Y variables? OTime (s) positio:((m)
1 9

e What are the parameters for our problem? 2 12
4 17

e (Calculating parameters 6 21

8 26



UCLA Linear Regression: Example

Engineer Change.

Step 1: Calculate Weights

e What are Xand Y variables?

_ - Time (s) Position (m)
o Time (X) and Position(Y)
1 9
e What are the parameters for our problem? 2 12
o Time (43 JIntercept
@' N g 4 17
lpeats
e Calculating parameters 6 21

° B=(XTx)"'xTy g 2



UCLA Linear Regression: Example

= —
— e « )<
(M ‘
] (9
Time (s) Position (m)
1 9
2 12
4 17
- vt 6 21
xTx =% (xTx)'=7 &
7S 8 26

XTy =7 f=(XTX)'xTy =70




UCLA Linear Regression: Example

Step 2: Apply your model and predict

e Plugtime values into linear regression equation Time () Position (m)
§ = 2.378z + 7.012¢, 4 i 192

e Predicted value at time =12 secs

g(z = 12) = 2.378 x 12 + 7.012 = 35.548 4 17

e Matrix form to predict all other positions : zz

= XA

12 35.55



UCLA Linear Regression: Example

er Change.

Plot: Check your model

Time (s) Position (m)
1 1) [ 9.390 1 9
I 2 11.768 2 12
1 6 ' 21.280
6 21
1 8 26.036

- - - - 8 26



UCLA Linear Regression: Example

Engineer Change.

Plot: Check your model

A T)(
30+ VS %
Time (s) Position (m)
- \> 1 0]
20- (* p
X 2 12
>
10- 4 17
6 21
0 L] L] L] L] | J 8 26
0 2 4 6 8 10



UCLA  |inear Regression: Underfit & Overfit

Engineer Change.

e \What is overfitting and underfitting i in llnear regression? — This topic will be
discussed later. _f(x)

- KL & @
o How to avoid overfitting? (%/ ;) %H [[;; B Y _‘(_SP SY 7@
. 2L P ?X
v N : Yz j P (; @
s® » x) - x>

Underfitting Just right! overfitting



UCLA Bias vs Variance: Example

Engineer Change.
Linear Regression Decision Tree (Week 2)
Size Size Size
0() ) 011 Oy + 01 + 02.772 0o + 01 + 0222 + 032> + 042t
High bias “Just right” High variance §
(Underflt) (Overflt) Complexity
(%))
e . ® o) g o,
Xy + (A Y " - sl 7 % 780 VY .
Fo*%flﬁ@hf} Z{ v @} - 1]/ e . . . ..
® = oot

+(4g1171}+..,



UCLA

Engineer Change.

Bias vs Variance:

Example

1. hel(z) =6+ 0z
2. hg(z) =00 + 61z + 022
3. hyp(z) =6 +011‘+...+g313

10. ho(xz) =6y + Oz + - -+ 010!10

Price
Price

X

Size

0() 3 01.1‘

High bias
(underfit)

Size

Oy + 01 + 92.‘1‘2
“Just right”

Price

Size )
9() =+ 0].1' + 02."2 -+ 031_.1 -+ 0.1.1’4

High variance
(overfit)

Low High
Variance Variance <
Underfitting X
X
High
Bias
Truth

Low @

Bias

Bl Howe, UW

Overfitting




UCLA Closed form: LR + Regularization

er Change.

................

e Model
@:$T5=$151+56252+“'+$p5p

e Original Objective

min J(6) = % i(mTﬁ —y)?
e L2-Regularized Objective . ﬂtlﬂ
i J(8) = 5378 0"+ %IIﬁQ\Q bt
- AL



UC'—A Closed form: LR + Regularization
L oM IBIP
3 AP 08 Z 03
min J(8) =5 S8~y + 501 > "3 =
: 2i:1 w:Zw(xTﬂ—y)—{—)\,B -0
03 .



UCLA |inear Regression: Probabilistic Interpretation

Engineer Change.

Likelihood of one training sample (zp, ¥n)

1 _ [yn—(8g+8 zn))?
P(Yn|Tn; 0) = N (0y + 012,,0°%) = 27me 202

LL(6) =log P(D)

N
= log H p anQ:n E logp(ynlxn)

=1

_ Z { (00 s 9””")] —log 27ra}

N
); 2
- —W En [yn — (60 + 6120)]° — iloga — Nlog V27

1|1
=y {; Z[yn — (6p + 61z,)]> +N loga2} + const
n

Maximize over 6y and 6,

MLE = Least

max log P(D) < min Z[yn — (80 + 612,))? Square Error!



UE'-A Gradient Descent
WWK ( 0;-’(\’]M v >Z|/\)

e
Jo
/} ':0:‘,:,"“

Global Minima

Saddle Point



UCLA Batch vs Stochastic Gradient Descent

Engineer Change.

Algorithm 1 Gradient descent \ Algorithm 2 Stochastic Gradient descent
1: 6+ 0. & 0+ 0.

2: for epoch =1...T do W/@ forepoch—l T do

33 6+6-nVJO) v
4: end for r~ )

—

: : for (cc y) cDdo — Randomly choosing
BeE Y T el a training sample

2:
3
4: 00— ’I’]VJ(:D,y) (9)
5
6
7

5: return 0 D\ V

3\@ - wa MNM

end for
- end for
- return 0

h
Algonthm 2 Gradient Descent ( J) \\ \\// Algorithm 3 Stochastic Gradient Descent (J)
. Initialize 6© \V : Initialize 6 (0)

2

3: repeat

4:  Randomly choose a training a sample x;

5.  Compute its contribution to the gradient g; = (m}‘a@) — Y@y
6: Ot  9(t) _ g,
7

8

9

repeat e
vJ(00) LXTX00 — XTy = 7, (10 —
0t o) v IEH)
T Al ) flﬁ
b4l s (0 - MY
until convergence < .
Return final value of 6

<

- - A/ -

tet+1 (Y: Q‘Qm)‘{n

. until convergence v
. Return final value of 8

O N o b N




Engineer Change.

UCLA V3</7L Batch 4 Stochastic / Mini-Batch

ey \V

/|| === Stochastic
o1 +—— Mini-batch
4| e Batch

26}

2.4+

-

2.5

=

3.0 3.5 4.0 4.5




UCLA | ogistic Regression VS Linear Regression

Engineer Change.

Logistic Regression

Sigmoid Function— Classification
Probability of Y (Discrete Labels)

( . )
Maximum
+|_ Likelihood
/
/
/ - N
Linear combination / weighted ) Least Square
sum of features ,/ L )

Predicted Value Y Regression
(Continuous)

Linear Regression




UCLA * Logistic Regression: Convergence? - -

Engineer Change.
= as

e True/False: Logistic regression cannot converge on a linearly separable dataset. b

w=1
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CS M146 Discussion: Week 5
Overfitting and Regularization, Neural Nets

Junheng Hao
Friday, 02/05/2021



UCLA Roadmap

Engineer Change.

e Announcement
e Overfitting and Regularization

e Neural Nets



UCLA Announcements

Engineer Change.

e 5:00 pm PST, Feb 5 (Friday): Weekly Quiz 5 released on Gradescope.

e 11:59 pm PST, Feb 7 (Sunday): Weekly quiz 5 closed on Gradescope!
o Start the quiz before 11:00 pm PST, Feb 7 to have the full 60-minute time

e Problem set 2 released on CCLE, submission on Gradescope.
o Please assign pages of your submission with corresponding problem set outline
items on GradeScope.
You do not need to submit code, only the results required by the problem set
Due on 11:59pm PST, Feb 12 (Friday)



UCLA About Quiz 5

Engineer Change.

Quiz release date and time: Feb 5, 2021 (Friday) 05:00 PM PST
Quiz due/close date and time: Feb 7, 2021 (Sunday) 11:59 PM PST
You will have up to 60 minutes to take this exam. — Start before 11:00 PM Sunday
You can find the exam entry named "Week 4 Quiz" on GradeScope.
Topics: Overfitting, Regularization, Neural Nets (without Backprop)
Question Types
o True/false, multiple choices
o Some questions may include several subquestions.
Some light calculations are expected. Some scratch paper and one scientific calculator
(physical or online) are recommended for preparation.



UCLA Clarification: Logistic Regression Convergence

Engineer Change.

Logistic regression (without regularization) cannot converge on a linearly separable dataset.

0.2
"\Bl(x) |"’:“)0 ( X +\0/>
@ S —— g = O— ? Q(WTX) g(wa)
w
w:%e giw'l‘x)i&i--/'// ) gi(w'}'x) =05 }/ )
w0 o o O | o w - Z

Campuswire Post: https://campuswire.com/c/GB5E561C3/feed/230
Reference: https://www.cscu.cornell.edu/news/statnews/82 lgsbias.pdf




UCLA Clarification: Logistic Regression Convergence

Engineer Change.

X, y = np.array([[-1],[1]]), np.array([0,1]) # train data

In sklearn, you have solver options as newton-cg, lbfgs, liblinear, sag, saga.
Then train a logistic regression model without penalty

clf = LogisticRegression(random_state=0, penalty='none', solver='sag', max_iter=1000).fit(X, y) # or other solver except ‘liblinear’
You may notice different solvers may result in different w ranging from 5 to 10 (printed by c1f.coef_ ). Sometimes you might have a convergence error as follows:

clf=None
# solver = ’‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’

clf = LogisticRegression(random state=12, penalty='none', solver='sag',6 max_iter=1000, verbose=10).fit(X, y)
clf.coef , clf.intercept , clf.n iter

max_iter reached after 0 seconds
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.

/Users/junhenghao/opt/anaconda3/lib/python3.7/site~packages/sklearn/linear model/ sag.py:330: ConvergenceWarning: The
max_iter was reached which means the coef did not converge

"the coef_ did not converge", ConvergenceWarning)
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s finished

(array([[8.29936548))), array([0.00109003)), array([1000), dtype=int32))

And again train a logistic regression model with L2 penalty

clf = LogisticRegression(random_state=0, penalty='12", solver='lbfgs').fit(X, y)} # L2 used

This time, you will find different solvers converges to w = 0.675.

Colab Link: https://colab.research.google.com/drive/1HrmthtXmg2PQ 9BHrylzrePWnSs2iQLn?usp=sharing




UCLA Overfitting

Engineer Change.

Key Questions: Credit:

) ) Lo https://hackernoon.com/memorizing-is-not-
e Howto 'dentlfy Overﬁttmg? learning-6-tricks-to-prevent-overfitting-in-m

e How to avoid overfitting? achine-learning-820b091dc42

Low Training Error High Training Error

Probably some error in
Low Testing Error The model is learning!  your code. Or you've
created a psychic Al

OVERFITTING The model is not

High Testing Error learning.



UCLA )Ove % mg Polynomial Regression

Q&c W\X e Z Wi X oé W,x+\r'w<

L/\
Error
—
. . . . . ° Best Testing Error
se Lo . LX) o ie Complexity
© PP e-® oY e o L O ~% o 3
® a P ® o\ 2 ® ® o rECER
” ® ® L] e & [ ] . B ° b ® . e L ]
Underfitting Overfitting Balanced .
Training Error
1
1 Model Complexity
High
Varxance Variance
Underfitting X
X X
High X
Bias

Truth

Low
Bias

Overfitting




UCLA Overfitting

Engineer Change.

[ Overfitting }

-

[ Data Size 1 [ Model Setting }

MACHINELEARNING MODELS
MACHINELEARNING MODELS

: %?f*y’ | ;( ,

n\\;;
[ 2 J—
EVERYWHERE

[ Regularization }

o=11/12 REGULARIZATION

EARLY STOPPING
o ENSEMBLING

THEY'RE ALL REGULARIZATION




UCLA Overfitting: Data solution

Engineer Change.

e Collecting more data
e Data augmentation

Overfitting

——————

Original 1st Variation 2nd Variation 3rd Variation

Testing Error

|

Training Error

» Dataset Size




UCLA

Engineer Change.

Overfitting: Model Solution

Avoid overfitting by changing model hyperparameter selection, from the mechanism and

°
inductive bias of the model.
[ Overfitting Prescriptions ]
(- O ? 4(
[ Our current model library ] U : W
DecisionTree =~ | - ? kw
k-NN oo
Logistic Regression  e-----q----"""" 7T ] ? W
Linear Regression ----____| 5 W
Neural Nets ... '
‘§_\‘\~~‘~) ? W
- J

Error

Best Testing Error

Complexity
1

Training Error

Model Complexity



UCLA Regularization
Engineer Change.
Linear Regression Logistic Regression
) Model ° Model
§=aTB =161 + 722+ + 7By ey
V=0l =T

e Original Objective
N

1
min .J = — zT 3 — y)?
tin J(8) 2;( B-v?
e L2-Regularized Objective Y.

| ¢
win J(5) =@Z(mTﬂ -9’ 4F18I5)

=1

—

J(B)

Original Objective

T(B) =~ 3" (yia? B~ log (1 + exp{al 5}))

2

L2-Regularized Objective

- _% Z (yz:cgfﬁ —log (1 + eXP{szﬁ})) £ )‘Z 532'

i 1
\

-_—



. . . . I ? PN
UCLA Linear Regression + Regularization 7 v
/N\ 0J(8) < ax |18])°
min J(B) = 5@ y)f{# %HﬁllQ B 2 =@ B—y)+ 0
— Y - Ax
0IB) _ §~ a5 — )+ A8 1
8 Y > A=)

ﬂ/U@ 75 (B) = 0
-

v

A o)
%Q%&@&

1 A
75 (5 XB -9 (XB - Y5678 ) =0

XTXB - XTy + AIB =0

g =(X"X +@)'1xTy




UCLA About Norms (Vectors)

Engineer Change.

Iwlly = Jws| + |wa| + ... + |wn]

1-norm (also known as L1 norm)

1
Iwllz = (lws* + |wal* + ... + wn|*) ?

2-norm (also known as L2 norm or Euclidean norm)

z
IWllp = (Jwi[? + |wa|” + ... + [wn[?)?
1 p-norm
\3’/ v g ‘5)}
2T [ oematve 1 7 * T ctandw: s
Zimd i\ |12 dematvs: ¢ w ’: l) -Qw -2 22 .. . .

T el Y =
AR 7 Y N N B
o [ mEW _ EE _EE

[

o A . #4272 IEETE ] ,
TN\ | - ¢l EEH HH B -

Y& = = B a = ¢ % 05 =Y Baseline L1 Regularization L2 Regularization

i
ope of




UCLA About Norms (Vectors)

Engineer Change.

N
Wil = |wy| + |wa| + ... + |wa] Loss = Error(y,j) + /\Z|w¢|
i=1

1-norm (also known as L1 norm) ;
Loss function with L1 regularisation

W=

N
Loss = Error(y,g) + A Z w?

i=1

w2 = (|wl|2 + |wa)? + ...+ Ilez)

2-norm (also known as L2 norm or Euclidean norm)
Loss function with L2 regularisation

How does L1/L2 regularization change the gradient descent step?



UCLA

Engineer Change.

About "Entrywise" Norms (Matrix)

L(2,1) Norm and L(p,q) Norm

IAll2x = llajlla => [ D las] = ||Allpg = >y |az‘j|p)
=1 =1 \i=1 =1 \i=1
e Frobenius norm (Hilbert=Schmidt norm) /} p) ? 2

m e~ 2
||A|O \li n il 22, (a;d-\

R
i=1 3=1 \)
e Max Norm

| A|lmax = mi?xlam. ”W”‘

Credit: https://en.wikipedia.org/wiki/Matrix _norm




UCLA Effect on Regularization

Engineer Change.

Without L2 Regularization (’ |, 0) (-1, >
X\ ‘J 2 Xa jj %
clf = LogisticRegression(random state=0, penalty='none', solver='lbfgs', max iter=100).fit(X, y) # or

ther solver except 'liblinear'
print(clf.coef , clf.intercept , clf.n iter )

[19.91926856]] (0.1 [13]

clf = LogisticRegression(random state=0, penalty='none', solver='newton-cg', max iter=1000).fit(X, y) # or other solver except 'liblinear’
print(clf.coef , clf.intercept , clf.n iter_ )

[[10.202836147]] [0.] [9]

With L2 Regularization /\’

clf = LogisticRegression(random state=0, penalty='12', solvéf;‘lbfgs').fit(x, y)
print{clf.coef , clf.intercept , clf.n iter )

[[0.67483169]]1][0.] [4)

clf = LogisticRegression(random state=0, penalty='12', solver='newton-cg').fit(X, y)
print(clf.coef , clf.intercept , clf.n iter_ )

[[0.67482829]71|[0.] [2]




UCLA  Neural Networks: Neuron/Perceptron

Engineer Change.

4 AR AKX impulse
s - S - '
/ ) x—axon P

direction \ode of ranvier
——
r B s e Sia
e o e -l axon
hR \f_terminal
~
N\

https:/medium.com/typeme/lets-code-a-neural-network-from-scratch-part-1-24f0a30d7d62
https://becominghuman.ai/what-is-an-artificial-neuron-8b2e421ce4d2e




UCLA  Neural Networks: A Simple Architecture

Engineer Change.

I-—- HIDDEN LAYERS

|— HIDDEN LAYERS I

1

OUTPUT

INPUT OUTPUT

https://www.ptgrey.com/deep-learning




UCLA NN Example: XOR

e Which NN architecture corresponds to which function?
threshold

[==—1
.
[

0 1
Y 01010 Y 010
0 0

—

X X
Table 1: Truth table for AND Table 2: Truth table for OR

1 [1]o A (a)
Y 0]10]1
01
X
b) step
Table 3: Truth Table for XOR ( function

https://datascience.stackexchange.com/questions/11589/creating-neural-net-for-xor-function
http://ven.cs.stir.ac.uk/~kjt/techreps/pdf/TR148.pdf

https:/medium.com/@jayeshbahire/the-xor-problem-in-neural-networks-50006411840b




UCLA NN Example: XOR

[S—
k.
[S—

0 1
Y 01010 Y 010
0 0

[am—

X X
Table 1: Truth table for AND Table 2: Truth table for OR

NOT AND gate
1 [1]0 A @
Y 0l0]1
01

X
Table 3: Truth Table for XOR

https://datascience.stackexchange.com/questions/11589/creating-neural-net-for-xor-functi
on

http://yen.cs.stir.ac.uk/~kit/techreps/pdf/ TR148.pdf
https:/medium.com/@jayeshbahire/the-xor-problem-in-neural-networks-50006411840b




UCLA NN Example: XOR

Engineer Change.

Linear classifiers

. . We can also use the
gannokspiveithis b=-10 o ( 20x, + 20x, — 10) step function
instead of sigmoid

o ( 20h, + 20h,— 30)

b=30 o (-20x, — 20x, + 30)

X1 X2 X1 X2
0(20*0 +20*0-10)=0 0 (-20*0-20*0+30)=1 o0 (20*0 +20*1-30)=0
0(20*1 +20*1-10)= 1 o (-20*1-20*1+30)~0 o0(20*1+20*0-30)=0
0(20*0 +20*1-10)=1  0(-20*0-20*1+30)=1 0 (20*1+20*1-30)=1
0(20*1 + 20*0-10) = 1 0(-20*1-20*0+30)=1 o0(20*1+20*1-30)=1

https://www.youtube.com/watch?v=kNPGXgzxoHw




UCLA NN Example: XOR (Cont'd)

Engineer Change.

Example: XOR

Now let's consider using a two-layer neural network, with the following
equation:
g(x) = w’ max(0, W x +¢)+b

We haven't yet discussed how to optimize these parameters, but the point here
is to show that by introducing a simple nonlinearity like f(z) = max(0,x), we
can now solve the xor(-) problem. Consider the solution:

w - [1]



UCLA 2-Layer NN Example

R K

Z- 1 W;A b))
2

2

Neural network architecture

An example 2-layer network is shown below.

N ‘s‘e W€ RﬁXIP 'L(GQU
- / woe R b R

’24

¥
he £
Here, the three dimensional inputs (x € R”) are processed into a four

dimensional intermediate representation (h € R*), which are then transormed
into the two dimensional outputs (z € R?).




UCLA 2-Layer NN Example

Engineer Change.

h,l

Layer 1: hy = f(W1x+ b;)
Layer 2: hy = f(W3h; + bs)

h2
%

O
hs

ha

Layer N: z= Wxyhy_1 + by

Questions:

1. Neural network model (in equations)

2. Number of neurons?

3. Number of weight parameters / bias parameters / total learnable parameters?



UE‘-A Neural Networks: Demo

o Let’splay withit: © 0 M000346 o e e T e
https://playground.te

DATA FEATURES 4+ — 2 HIDDEN LAYERS OUTPUT
n S O rf l.O W ° O rg / Which dataset co Wrich properties Test loss 0.003
you want to use? o you want to + Training 1058 0.003
faed in7? ) = ot

8 neurons 1 newron

+ = 3 MODENLAYERS ouTPUT

* - > - Ratio of training to
= = it Ao 2 V fhe outputs an 0
o g —e X,
\ .
\ - : 3
] -~ > by Ve thicknass
m . { ;‘:.". STEaRv w of tha lines
2 . @)
{ SO0 P 0.
E ‘\‘ D o ._' et Batch size; 10
o >lmle. -
g : =
@ — REGENERATE
¢ D Calors shows
== —
D . data, neuron and |
E X D e it This i the aurpul welch valoes. A 0 g
bom one neuroa

Hover o see il
sargor [ Showtestdata [] Discretize output




UCLA

Neural Networks: Backpropagation

FORWARD PROPAGATION
X=AL All AL AL ALS§
L
— SGD
= Momentum
wit A0l wi2 Alll wik AlL-1] - NAG
pl1] zll  pl2 zI2] piL] zIL Vi — Adagrad
y. ’fw’,’,’,’h,"fr;”/ 7] — Adadelta
= 4 ’I/"I &
| |
PARAMETERS

LOSS
FUNCTION
VA D,
witl wi2l wid
dwitl bl awi2 bl dwit bl
dbl] 21 db 2121 db 2]

BACKWARD PROPAGATION

it

2 :{',,'o’,’;af,'r,:' Rmsprop

’7"’"'"" 5 ."ml s

2 7' "'* I

l’ '('Jl l /f,

0 o7 il

'e, "r'j"t"
46

, e
‘r,a
{0

https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e




UCLA Neural Networks: Backpropagation

Engineer Change.

e Asimple example to

o x=3,y=4-1(3,4)=42
e Backward pass:
o Chainrule:

of _ df
ox dn 6

e o e e o o e e e e e e e e e e e e e e

: Another better demo:
: http://colah.github.io/posts/2015-08-

B o o o e e e o e e e e e e e e M e e e e

dflon, = offan, x an_/on,
=1x1=1

n

af/an6 = 8f/an7 X an7/an6
=1x1=1

5

(1)
0 /an2 = af/an5 X 6n5/c9n2

offon 4= é’f/é‘n5 x 6n5/6n i

=1%n,=4
n4
............... 2 n3 2 2
n, @ m @
3fldy = aflon, + aflan,= 1+ 9 = 10

(1) (2
dffox=n,x4 + n x4 = 24



UCLA Multiclass Classification

mdden
apples: yes/no? «® %o ) ...:
- ° :°.o. ..3..‘“."
° L) °
bear: yesino? . o 9 ...o
L] .. ’.'.’ ‘; 2
- candy: yes/no? .o;. = o . : .8 o ® .
[ ]
o ESats.l > 3
dog: yes/no? ° *# A o® . ®
(] ..’ g g ©® o6 ®,0 ©
L "* Q::. ° mo o
: o oo : ®
egQ: yes/no? | T ] e S ‘s @ w . :o -
® e o P * ‘ ®
e ’--’.‘”&f&':", o
| 4o
° @

5 separate binary classifiers
Key: sharing the same hidden layers with different weights at the end
Question: Pros and cons?

https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/one-vs-all
http://www.briandolhansky.com/blog/2013/9/23/artificial-neural-nets-linear-multiclass-part-3




UCLA 2-Layer NN Example

Engineer Change.

Demo in class : Back propagation for a 2-layer network




UCLA Backprop: Exercise (next week)

In this question, let’s consider a simple two-layer neural network and manually do the forward
and backward pass. For simplicity, we assume our input data is two dimension. Then the model
architecture looks like the following. Notice that in the example we saw in class, the bias term
b was not explicit listed in the architecture diagram. Here we include the term b explicitly for

x( each layer in the diagram. Recall the formula for computing x(!) in the I-th layer from x1-1 in
the (I — 1)-th layer is x) = £ (Wx(1-1) 4 p1) ) The activation function f(!) we choose is the

sigmoid function for all layers, i.e. f0(z) = m The final loss function is ; of the mean

squared error loss, ie.[(y,§) = %Hy -9 %
We initialize our weights as

a) _ 0.15 0.2
v [0.25 0.3

], W® =[04,045, b® =[035,035, b® =06

1. When the input x(0) = [0.05,0.1], what will be the value of x() in the hidden layer? (Show
your work).

2. Based on the value x(") you computed, what will be the value of x(?) in the output layer?
(Show your work).

3. When the target value of this input is y = 0.01, based on the value x(?) you computed, what
will be the loss? (Show your work).

Input layer Hidden layer Output layer



UCLA  why understanding backpropagation?

Engineer Change.

e “Why do we have to write the backward pass when frameworks in the real
world, such as TensorFlow/PyTorch, compute them for you automatically?”
e Vanishing gradients on Sigmoids

sigmoid function

derivative of sigmoid

10} R 1.0} - . - . ; : ; A
08} o 0.8 |- grAAL LSS ; hrans:T
derivative is zero at tails

0.6 } 0.6 } :

0.4} s 0.4}

| | | —__/\-— ‘

0.0 - 0.0 - .

1 | 1 | 1 | | 1 i |

-10 -5 0 5 10 -10 -5 0 5 10

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b




UCLA  why understanding backpropagation?

e RelUs

ook b

RelLU function

o ~N 'S o o o)
' T 1 T 1 1

derivative of RelLU

| derivative exadtly zero here

tanh(x)
_— ;;f;trr,nh.(af)




UCLA  \Why understanding backpropagation?

Engineer Change.

e Examples of activation function: Sigmoid, ReLU, leaky ReLU, tanh, etc
e Properties we focus:

o Differentiable

o Range: Whether saturated or not? (

o Whether zero-centered or not?
e Activation function family

o Wiki: https://en.wikipedia.org/wiki/Activation function




UCLA NN: Backpropagation Reading List

Engineer Change.

e Backpropagation (CS 231N at Stanford)
o https://cs231n.github.io/optimization-2/
o https://www.youtube.com/watch?v=i940vYbénoo
e (Optional) Matrix-Level Operation:
o https://medium.com/@14prakash/back-propagation-is-very-simple-who-made-i
t-complicated-97b794c97e5c¢




UCLA  NN: Number of iterations to converge

Engineer Change.

e Architecture/Meta-parameters of the network, e.g. # layers, activation
Quality of training data (input-output correlation, normalization, noise
cleansing, class distribution/imbalance)

Random initialization of the parameters/weights

Optimization algorithm, e.g. SGD, Adam, etc.

Learning rate

Batch size

(In practice) Implementation quality (Bug-free? Optimized?)

https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e

https://www.quora.com/Machine-Learning-VWhat-are-some-tips-and-tricks-for-training-deep-neural-networks




A mostly complete chart of
o= Neural Networks ...
@ taputcell ©20% Fiodor van Vaen - Emosinatituts o

& oy input Coll Pecceptron (F)  FeedForward(FF)  Radial Basis Natwork (RBF)

. Hidden Cetl @ I
@ Proboblistic Hidden Cel f’-: &€ [
@ spuing Hidden Cell

@ oupurcou

UCLA NN Summary

Engineer Change.

Recuerent Newdal Network {RNN) Long / Short Term Memory (L5TR) - Gated Hecurrent Unet (GRU)
% = o -

. Match Input Output Cell

@ recurenca

= RGIREP =
- N ' .
S' ,e er 1 MAM L‘W 2 *d“ W ‘n @ wemoyca Autg Encoder (M) Variational AE (VAE) Dancising AE (DAE) Sparse AF [SAE)
) "' X Kl J

@ oifferent Memary cett

(perce pton) xw__ &o‘

Markew Chain (MC) Hopfiald Retwork (MN] - Boltzmann Maching (8M)  Restricted B (RBM) Deep Artief Network (DBN)

Deconvalutional Metwark [DN) Duﬂ Canvoluticnal Inverse Graphics Network (DCIGN)

Generative Adversarial Network (GAN) Liquid State Machéne (LSM]  Extreme Leaming Machine (ELAS) Echo State Network (ESN)

@
4.\ 1‘\'/.\ 4‘\ @

Flexibility p i wivviwis

Deep Residual Network (DAN) Kobhoren Network (XN) - Support Vectar Mac)

https://www.packtpub.com/mapt/book/big_data and business_intelligence/97817883978

72/1/ch01Ivl1sec27/pros-and-cons-of-neural-networks m % %

http://kseow.com/nn/
https://towardsdatascience.com/hype-disadvantages-of-neural-networks-6af04904basb




UCLA NN Summary: Pros and Cons

FPS:20.6644848 W:Floor B:Vertical structure/Wall

:Large structure/furniture I:Small structure
" SR 3 .

3 A Pt AR ':_:-':

Result of dense 3D reconstruction
and semantic label fusion

Efficiency (In many cases, prediction/inference/testing is fast)

https://www.packtpub.com/mapt/book/big_data and business _intelligence/9781788397872/1/ch01lvllsec27/pros-and-cons-of-neural-networks
http://www.luigifreda.com/2017/04/08/cnn-slam-real-time-dense-monocular-slam-learned-depth-prediction/

http://www.missqgt.com/google-translate-app-now-supports-instant-voice-and-visual-translations/




UCLA NN Summary: Pros and Cons

Engineer Change.

" Inception-v4 We trained both our baseline models for about
Inception-v3 . 600,000 iterations (33 epochs) — this is similar

75 |Reset-50 (8 oy VGG-16 VGG-19 to the 35 epochs requ1.re.d by Nallapati et al.’s
‘ ResNet-34 (2016) best model. Training took 4 days and 14

£ 70 Aeshiatans hours for the 50k vocabulary model, and 8 days 21
g GooglLeNet I hours for the 150k vocabulary model. We found
g | ENES ' the pointer-generator model quicker to train, re-
H: © =n-NIN quiring less than 230,000 training iterations (12.8
P g0 8 SNSRI SN N S S epochs); a total of 3 days and 4 hours. In par-
— A ticular, the pointer-generator model makes much

554 AlexNet quicker progress in the early phases of training.
ments. This work was begun while the first author

>0 0 5 10 15 0 55 30 35 40 was an intern at Google Brain and continued at

Qeestions [o-0ps] Stanford. Stanford University gratefully acknowl-
Efficiency (Big model — slow training, huge energy consumption (e.g. for cell phone))

https:/www.kdnuggets.com/2017/08/first-steps-learning-deep-learning-image-classification-keras.html/2

See, Abigail, Peter J. Liu, and Christopher D. Manning. "Get to the point: Summarization with pointer-generator networks." arXiv preprint arXiv:1704.04368
(2017).

https://www.lifewire.com/my-iphone-wont-charge-what-do-i-do-2000147




UCLA NN Summary: Pros and Cons

Engineer Change.

Why deep learning

Data Growth
40% per year

@
O
&
£
—
o

T
@

a

Amount of data

Data (Both a pro and a con)

https://towardsdatascience.com/hype-disadvantages-of-neural-networks-6af04904ba5b

DI DrAarocccinc A\ O
CPU P ocessing Fowe



UCLA NN Summary: Pros and Cons

Engineer Change.

Computational Power (Both a pro and a con)

https://www.anandtech.com/show/10864/discrete-desktop-gpu-market-trends-q3-2016
https://www.zdnet.com/article/gpu-killer-google-reveals-just-how-powerful-its-tpu2-chip-really-is/




UCLA NN Summary: Pros and Cons

Engineer Change.

0.97

Neural Network 0.01

0.02

Black Box
Interpretability

THIS 15 YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

https://towardsdatascience.com/hype-disadvantages-of-neural-networks-6af04904ba5b

https://xkcd.com/1838/




UCLA What’s next?

Engineer Change.

e In next week’s discussion, we will continue to discuss:
o Backpropagation in neural nets

e Programming Guide
o PyTorch (for PS3)



Samueli
UCLA Computer Science

Thank you!

Q&A






Samueli
UCLA Computer Science

CS M146 Discussion: Week 6
Neural Networks, Learning Theory, Kernels,

PyTorch

Junheng Hao
Friday, 02/12/2021



UCLA Roadmap

Engineer Change.

e Announcement
e Neural Nets: Back Propagation
e Learning Theory

e Programming Guide: PyTorch



UCLA Happy Holidays!

Engineer Change.

d
NEW YEAR

HAPPY

2021 PRESIDENTS' DAY

THE YEAR OF OX

No lecture next Monday (Feb 15)!



UCLA Announcements

Engineer Change.

5:00 pm PST, Feb 12 (Friday): Weekly Quiz 6 released on Gradescope.

11:59 pm PST, Feb 14 (Sunday): Weekly quiz 6 closed on Gradescope!
o Start the quiz before 11:00 pm Feb 14, Feb 14 to have the full 60-minute time

Problem set 1: Regrade request due today
Problem set 3: Problem set 1: Will be released later today, due Feb 26 11:59PM PST

Problem set 2 submission on Gradescope.
o Please assign pages of your submission with corresponding problem set outline
items on GradeScope.
o Due on TODAY 11:59pm PST, Feb 12 (Friday)

Late Submission of PS will NOT be accepted!




UCLA About Quiz 6

Engineer Change.

Quiz release date and time: Feb 12, 2021 (Friday) 05:00 PM PST
Quiz due/close date and time: Feb 14, 2021 (Sunday) 11:59 PM PST
You will have up to 60 minutes to take this exam. — Start before 11:00 PM Sunday
You can find the exam entry named "Week é Quiz" on GradeScope.
Topics: Neural Nets, Learning Theory
Question Types
o True/false, multiple choices
o Some questions may include several subquestions.
e Some light calculations are expected. Some scratch paper and one scientific calculator
(physical or online) are recommended for preparation.



UCLA Neural Networks: Backpropagation

FORWARD PROPAGATION

X=Al0l

Altl Al2) AlL-1]

wiril || Al wiz

SGD

= Momentum
7 - NAG
pl1] zll  pl2 L /;:”" — Adagrad
m,,,,;«;f/f;ra ’;F'} < Adadelta
a 7 "'0’5'5/' e

;"r',"l,;‘f Rmsprop
2

l
1 'o AR 3
iy ,,6"9 b
' "'a'» g
gk
f

"e'd "
SEAILS
-2

BACKWARD PROPAGATION

https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e




UCLA Neural Networks: Backpropagation

Engineer Change.

s
, 7
e Asimple example to af/an5=@x @
stand the intuition =1%x1=1
o (fOLYY=xy+y+2
Forward pass:
o x=3,y=4-1(3,4)=42 offen, = offan, x anan,
e Backward pass: =1xn,
o Chain rule: n,
of _ of 5 e
_______ d_)f___?}_z_“_?"“ Koo 0y 2 oy n,| 2,
n,: Xg. (1) )

I http://colah.github.io/posts/2015-08- (1) ()
offox = n. x4 + n x4 =24

| . : :

. Another better demo: : ofldy = ofion,, + ofion,= 1 + 9 = 10
1
1



UCLA 2-Layer NN Example

Engineer Change.

Demo in class : Back propagation for a 2-layer network




UC‘-A Backprop: Exercise

In this question, let’s consider a simple two-layer neural network and manually do the forward
and backward pass. For simplicity, we assume our input data is two dimension. Then the model
architecture looks like the following. Notice that in the example we saw in class, the bias term
b was not explicit listed in the architecture diagram. Here we include the term b explicitly for
each layer in the diagram. Recall the formula for computing x(!) in the I-th layer from x1-1 in
the (I — 1)-th layer is x) = f)(Wx1-1) 4 b)), The activation function f). we choose is the
sigmoid function for all layers, i.e. f(z) = m. The final loss function is % of the mean
squared error loss, ie. I(y,¥) = L[|y — 9|/

We initialize our weights as

w = [g;g g'g], W® = (04,045, b® =[0.35035, b® =06

Input layer Hidden layer Output layer



UC‘-A Backprop: Exercise

x(© x® 6'K) Forward Pass

1. When the input x©@ = [0.05, 0.1], what will be the value of x(1) in the hidden layer? (Show your work).

2. Based on the value x(!) you compyted, what wi| be the value of x2) in the output layer? (Show your work).
3. When the target value of this inpu{is y = 0.01, pased on the value x® you computed, what will be the loss? (Show your work).

. m “) 0.3775
): w™ X :[0\2925

£
05122
(J(@ wu)z J(Z ) [06?0/5/ g
Z

Input layer Hidden layer Output layer

w — [g;g g'g], W® = [0.4,0.45),

b = (035,035, b® =06 9’147(7/7“'#

T
input x(®) = [0.05,0.1]



UC‘-A Backprop Exfe\rmse

(2)
pa (}/ ¢
~ ~ Back Propagat[on@f W i W x T

1. Consider the loss / of the same input X = [0.05, 0.1], what will be the update of W) and b‘® when we backprop, i.e. a&'w 0:{“
gol ol

2. Based on the result you computed in part 1, when we keep backproping, what will be the update of WX and bV, i.e. e .-

z:; %"”W & (4

) o 15 0. 2
w! o 25 0. 3 :45],
b =1[0.35,035, b® =06

input x(® = [0.05,0.1]
target value of this input is y = 0.01




UCLA  \Why understanding activation function?

Engineer Change.

e “Why do we have to write the backward pass when frameworks in the real world, such
as TensorFlow/PyTorch, compute them for you automatically?”

e Vanishing gradients on Sigmoids
gli-0)
sigmoid function derivative of sigmoid
10| ! : i & 1.0 |- 4
0.8 | =) 0.8 |- griseeigesysty s
derivative is zero at tails

0.6 | 0.6} . : / );07/5

K= 0 O’(ﬁ
0.4} 3 0.4} : :

0.2

0.0 0.0+

l l

-10 -5 0 5 10 -10 -9 0 5 10

-
-
-
-
-
-

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b




UCLA  why understanding backpropagation?

Engineer Change.

RelLU function derivative of RelLU L
& 1.0 | ; 1
e RelUs - L w— ‘ ]
6 o6 | derivative exadtly zero here
&1 0.4}
2F 0.2 |-
. i 1 0.0 |-
-10 -5 ) 5 1;) ~10 5 P - e
——tanh(z)
— ‘_,‘—étrmh{ gr;)_
o5+
e tanh ) | Sl
-3 -2 o, 1 2 3




UCLA  why understanding backpropagation?

Engineer Change.

e Examples of non-linear activation functions: Sigmoid, RelLU, leaky ReLU@

etc
e Properties we focus on:
o Differentiable
o Range: Whether saturated or not? (
o Whether zero-centered or not?
e Activation function family
o  Wiki: https://en.wikipedia.org/wiki/Activation function




UCLA Neural Networks: Online Demo

Engineer Change.

. Let ’S p I_ay W it h i t : 0 o i B.\a_(l:\) 346 Leaming rate Activation Ragularization Reqularization rate P'ub*a'n‘ 'y()@
https://playground.te

DATA FEATURES 4+ — 2 HIDDEN LAYERS OUTPUT
n S O rf I_O W ° O rg/ Which dataset do Which properties Test loss 0.003
you want to use? o you want to Training 105 0.003
faed in7 o + -
8 neurons ”

Calors shows

data, neuron and ! !
3 1

weight values

+ = 3 MODENLAYERS OuTPUT
Tost 000 0501
- + - @ = [Terisgomso. Ratio of training to
.E E} .E test data; 70% ko
m - D :'" H -""hf\‘\" \\7 Noige: 0 of tha (in
s oy $ 7 . -— of tha iines
[ i (] R \_./._': ..3 L
B “‘ D e ;'“ : i Batch size; 10
I —9
(% o O
g (I REGENERATE
[ 3
" O

[ Showtesidata [[] Discretize output




Just For Reading
2 N

UCLA Story of Computing

Engineer Change.

-« = Richis rich—



UCLA

Engineer Change.

Story of Computing

Just For/@@gg\z\ng

BNl
EEER
HEY Al
Hal— =3
\weseirssdf

e L)

e

el
o

~ B /
e

mZams

5 B 61 1

EEE

Ik

|

/
/ ea AR | =

\\\\
. Inception Layer g
i,— B v

BleEfee:

Matrix Multiplication is
Eating (the computing resource of) the World!



UCLA Single-thread Computing of X*W

Engineer Change.

Single-threaded Execution

X [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values
W= [0.1, 0.1, ..., 0.1] # Then we need to have 256 weight values

= X * W # [1*0.1 + 2%0.1 + ... + 256%0.1] == 32389.6

Prev Single-threaded
Execution

= 0.
e

= = ) ALRY N
J

3238.5+255%0.1 = 3264
et
3264 + 256*%0.1 = 3289.6




. Just Forﬁeﬂad\z\ng
UCLA  Neural Networks: Computation Example ()
e
XSB
T Matrix Unit Systolic Array
é;{ X || Xa || X
% || %
) Computing y =Wx
> , ) 3x3 systolicarray
= " %z W = 3x3 matrix
g @ i ’ Batch-size(x) =3
*.::Z < g W, || Wy, || wa
g g | W Wa, W,
L I accumulation >




Just For Regading

UCLA Neural Networks: Computation Example

Engineer Change.

;
Matrix Unit Systolic Array
X5 :
2 Computing y = Wx
g.< 5 X, with W = 3x3, batch-size(x) =3
X, Xa2 Xi3
\ X5 Xz
-
% < § W || W || W
3 g w, || we [] ws
i

accumulation >




Just For Regading

UCLA Neural Networks: Computation Example

Engineer Change.

I
Matrix Unit Systolic Array
2 Computing y =Wx
g.< with W = 3x3, batch-size(x) =3
Xy
\ X3 Xz X3
i -
B i 2

£+ g o | v | v
2 g W, W, || Wa

\

ao;u;nulatk;n” >




Just Forﬁ\g;ggg\i\ng

UCLA  Neural Networks: Computation Example (|

Engineer Change.

Matrix Unit Systolic Array

Computing y = Wx
< with W = 3x3, batch-size(x) =3

inputs

Xy
\
(
B W" ) w‘fxn 3 w‘:xﬂ
g X5 Bl wixi W =
ot .E Wz1 i e
‘9:7 < : X5 - V. X, Wa
() 2
= g W,
= W, || Wi

[ accumulation >
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UCLA Neural Networks: Computation Example

Engineer Change.

‘‘‘‘‘
M

Matrix Unit Systolic Array

Computing y =Wx
with W = 3x3, batch-size(x) =3

inputs
o W

Xaa outputs
\ LN
’ g
==
g W, B W ‘)g Eq j 2 Y11‘w11x11+w12x12+w13x13
o~ = 2 e
E < i Wa = w,,.x,, - w’axn
=2 2| X [wx || -
= '?: W WX,
g IR B W
':7 _': x21 i 'N.“X” 3
\ "

[ accumulation >




UCLA

Engineer Change.

Neural Networks: Computation Example

Just FOC’?L? d\z\ng

inputs

SN

Matrix Unit Systolic Array
Computing y = Wx

with W = 3x3, batch-size(x) =3

weights

outputs
LN -

W, W, Yor =W X0+ W X0, + W, X0 Yo =W Xy + WX+ WX,

S w”x” AU e
Wa w\:xp % Yz = WXy, + WopXo, + WXy

s = i
W, 4 ’fx"
Xa |

WX, 3

M



Just For %

UCLA Neural Networks: Computation Example

Engineer Change.

p
* ° ®
Matrix Unit Systolic Array
2 Computing y = Wx
g-< with W = 3x3, batch-size(x) =3
outputs
\ A
[ , o =
g Wa W, Wis 0 Yo 3 Wi Xo # WX, + W, X5 Yo 2 W, X, + W X0+ WXy Yo = WXy + W
"S, < g w21 l w22 -' . Y22= w21X2i * w22x22 *WZ 23 YiZ‘ w!‘lxﬂ + w22x12* Wzsxis
-}g.‘! Wa B wx, [ - Yia = Wi Xy # WopX,, + WiXy,

IM



Just Forfi? d\z\ng

UCLA Neural Networks: Computation Example

Engineer Change.

P
Matrix Unit Systolic Array
2 Computing y = Wx
34 with W = 3x3, batch-size(x) =3
outputs
\ i e o =
g Wy Wy, Wi Yo = Wi X + WX, + WX, Yoy = WX+ W
g: < ;é W Wz W Yo = WXy + WX + WX Yoo = Wo Xo + WX + WX Y= Wy X + W
g W We : ) Y3 = WoXo # WX, + WioXos Yia= W X + WX + WaaX,

[ accumufation >
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UCLA Neural Networks: Computation Example

Engineer Change.

;
* ° Ld
Matrix Unit Systolic Array
2 Computing y =Wx
34 with W = 3x3, batch-size(x) =3
outputs
\ e, -
-
g W, W, Wi, Yar = WXy + W
% < g l Wm sz Wz; Y:z' 2")(:“ +szxn+ wz;xes Y22-w2?x21 +W
: |
£ W, W,, Wiy, Y = Wy, Xy + WX, # WarXas Yy = Wi, Xy + Wo Xo, + WX, Yia= WaXys + W

accumulation >
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UCLA  Neural Networks: Computation Example

Engineer Change.

PS & Chief

Parameter Server #1
Writes & Reads :

Parameter Server #2

Checkpoint Data
Shared Storage CPU CPU
[ Checkpoint J
S PS sends variables to WS
Training Data WS sends gradient updates to PS
Storage
v
Chief & Worker #1 Worker #2 Worker #3
WS Read L& E(crus “E [ cPus
Traihing TPU “¥|| TPU
Data

https://gcon.ai/system/files/presentation-slides/180411 gcon. presentation - 2.pdf?fbclid=IwAR38kE
Swm8e2NAhkj5JFqaz0FO0VtnCpFyBp1HHS5itsoSQIIYvkyYEwscOuY




UCLA Learning Theory

Engineer Change.

e Let Hbe any finite hypothesis space. With probability 1 -6 a hypothesis 7 — H that is
consistent with a training set of size m will have an error < ¢ on future examples if

1

lng

11/
m ﬁ(lnqmj +
a
1. Expecting lower error

increases sample complexity
(i.e more examples needed for
the guarantee)

)[?

3. If we want a higher confidence
in the classifier we will produce,
sample complexity will be higher.

2. If we have a larger hypothesis
space, then we will make learning
harder (i.e higher sample

complexity)

Credit: http://cs229.stanford.edu/summer2020/cs229-notes4.pdf




UCLA VC Dimension

Engineer Change.

e Given a hypothesis class H over instance space X, we then define its Vapnik
Chervonenkis dimension, written as VC(H), to be the size of the largest finite subset of X
that is shattered by H.

e Ingeneral, the VC dimension of an n-dimensional linear function is n+1

[T This term will decrease
This term may decrease
¢ VC(H) (ln vern + 1) +In 5
errp(h) < errg(h) + \l (H)
m

e Sample sizeforinfinite H

nelteon(g) raveunin(g)) ¢



UCLA VC Dimension of Half Space

Engineer Change.

e How to determine the set H of linear classifiers in two dimension has a VC(H)=3?

¥ X o X
Xy Xy X X 2
O O O O
X O X O
X, X, \ X2 X,
X X O O

[ VC dimension of H here is 3

even though there may be sets
of size 3 that it cannot shatter.




UCLA VC Dimension of Rectangles

Engineer Change.

e What is the VC Dimension of Axis-aligned rectangles?

’ D
o (5]
0 O O
@) @) <)
o 0 = & ;3
@) 0O @
O O ol
(3]
OC 1 ® ®|2’Ie e 4

Credit: https://www.cs.princeton.edu/courses/archive/springl4/cos511/scribe notes/0220.pdf



UCLA Kernels

Engineer Change.

e Motivation: Transformed feature space

(X)

e Basicidea: Define K, called kernel, such that:

Kxxx-r (2@) 20) = K@)

which is often as a similarity measure.
e Benefit:
o Efficiency: is often more efficient to compute than and the dot product.
o Flexibility: can be chosen arbitrarily so long as the existence of is guaranteed
(Mercer’s condition).

(a) (b)

Credit: https://cs.nvu.edu/~mohri/icml2011-tutorial/tutorial-icml2011-1.pdf




UCLA Polynomial Kernels

er Change.

A Definition: A2
Vz,y € RY, K(z, (x - y@@ c > 0.

& Example:for N=2 and d=2,

K(z,y) = (z191 + Zay2 + ¢)° ]

—

n 33; - - yg .
XL Y2
_ V211, _ V2192
2c xo 2c Yo



UCLA Kernels: XOR Example

)(2A \/§$1$2
(-1, 1) (LN O1L,+v2,—v2,-v2, 1)f (1,1, +v2,+v2,+v2,1)
o o e o
>XI > 22171
o o o ©
(-1,-1) (1,-1) (L,1,-v2,—v2,+v2,1) | (1,1,-v2,+v2,—v2,1)
Linearly non-separable Linearly separable by

129 = 0.



UCLA Other Kernel Options

Engineer Change.

Gaussian kernels: .
Also known as “Radial

- e = yl[? Basis Function Kernel”
K(:I:,y)—exp ) 0'740
Sigmoid Kernels:
K(z,y) = ta,nh@(a: - Y) +@, a,b> 0.
Note: The RBF/Gaussian kernel as a projection into infinite dimensions, commonly used in kernel SVM.
Klza') = exp(—(:c - ZL”)2>

"

exp(2zz’) Taylor Expansion

Credit: http://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/svms/RBFKernel.pdf



UCLA Programming Guide for PS3: PyTorch

Engineer Change.

e Important Concept Checklist
o Tensors, Variable, Module
Autograd
Creating neural nets with provided modules: torch.nn
Training pipeline (loss, optimizer, etc): torch.optim

O O O O O

Util tools: Dataset O
(most important) Search on official document or google
e A Not-so-short Tutorial: PyTO rch
https://web.cs.ucdavis.edu/~yjlee/teaching/ecs289¢g-winter2018/
Pytorch_Tutorial.pdf = Details and demo code in another slides
e Youtube:
https://www.youtube.com/playlist?list=PLIMkM4tgfinJ31-dbhQ9JT
w7gNtybo 2m




UCLA

Engineer Change.

PyTorch Project Pipeline

{ Data Preparation ]

Y

{ Model Design ]

Y

{ Training Strategy ]




UCLA yseP

Engineer Change.

yTorch to check your gradient calculation

Input fayer

class Net(nn.Module):
def init_(self):
super (Net, self). init ()

x®

def

Hidden layer Output layer

def

self.ll =
self.12 =

self.ll.weight.data =
self.l2.weight.data =
self.ll.bias.data =
self.l2.bias.data =

nn.Linear(2, 2, bias=True)
nn.Linear(2, 1, bias=True)

torch.Tensor([[0.15, 0.2], [0.25, 0.3]])
torch.Tensor([[0.4, 0.45]])
torch.Tensor([0.35, 0.35])
torch.Tensor([0.6])

forward(self, x0):

z1
x1
z2
X2

print("zl:
print("x1:
print("z2:
print("x2:

]

self.11(x0)
torch.sigmoid(zl)
self.12(x1)
torch.sigmoid(z2)
", 2z1)
", x1)
. 22)
: X2)

return x2

loss(self, x2, y):

1

nn.MSELoss ()

return 0.5 * 1(x2, y)

x = torch.Tensor([0.05, 0.1])
y = torch.Tensor([0.01])
net = Net()

y_hat = net(x)

loss = net.loss(y_hat, y)
print (loss)
loss.backward()

z1l: tensor([0.3775, 0.3925], grad_ fn=<AddBackward0>)
x1: tensor([0.5933, 0.5969], grad fn=<SigmoidBackward>)
z2: tensor([1.1059], grad fn=<AddBackward0>)

x2: tensor([0.7514], grad fn=<SigmoidBackward>)
tensor(0.2748, grad fn=<MulBackward(0>)

"d[wWl]",\list(net.ll.parameters())[0].grad)
print("d[bl]", list(net.ll.parameters())[1].grad)
print("d[wW2]", [list(net.l2.parameters())[0].grad)
print("d[b2]",/list(net.l2.parameters())[1].grad)
d[wl] rsor ([[0.0007, 0.0013],
[0.0007, 0.0015]])

d[bl] tensor([0.0134, 0.0150])
d[W2] tensor([[0.0822, 0.0827]])
d[b2] tensor([0.1385])

Colab Link: https://colab.research.google.com/drive/1FHo mkFaTatKepBw5VRRVUSBJzoMt U8?usp=sharing
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UCLA Roadmap

e Announcement
e Ensemble Method
e Multi-Class Classification

e ML Evaluation



UCLA Announcements

Engineer Change.

e 5:00 pm PST, Feb 26 (Friday): Weekly Quiz 8 released on Gradescope.

e 11:59 pm PST, Feb 28 (Sunday): Weekly Quiz 8 closed on Gradescope!
o Start the quiz before 11:00 pm PST, Feb 28 to have the full 60-minute time

e Problem set 3 released on CCLE, submission on Gradescope.
o Please assign pages of your submission with corresponding problem set outline
items on GradeScope.
You need to submit code and the results required by the problem set
Due on Today 11:59pm PST, Feb 26 (Friday)!

Late Submission of PS will NOT be accepted!




UCLA About Quiz 8

Engineer Change.

Quiz release date and time: Feb 26, 2021 (Friday) 05:00 PM PST
Quiz due/close date and time: Feb 28, 2021 (Sunday) 11:59 PM PST
You will have up to 60 minutes to take this exam. — Start before 11:00 PM Sunday
You can find the exam entry named "Week 8 Quiz" on GradeScope.
Topics: Ensemble Method, Multi-Class Classification, ML Evaluations
Question Types
o True/false, multiple choices
o Some questions may include several subquestions.
Some light calculations are expected. Some scratch paper and one scientific calculator
(physical or online) are recommended for preparation.



UCLA Quiz 7 Review: Kernel SVM

Engineer Change.

Q6 Kernel SVM

2 Points

We can introduce non-linearity to SVM using the kernel trick. Instead of se. ing for a
hyperplane W x + b that maximizes the margin, we are looking for WT(¢(x) ; bwhere ¢
is the non-linear basis function.

Which one of the following statements is wrong about kernel SVM?

® We can learn the optimal value of the weights W using only the kernel function. X

Linear SVM Kernel SVM
w'z+b wl¢(x,) + b

Weight parameter w = Zn AnYnTn @: Zany
Predicting new data SIGN (Y=, ynow (L) + b) SIGN() yn@ +b)




UCLA Quiz 7 Review: Kernel SVM

Engineer Change.

Q4 SVM on non-separable data

2 Points

Which one of the following statements is wrong about SVM applied to non-separable data

(soft-margin SVM)? R
S m\ﬂ/ff =

® During training, we do not only minimize % Hw”% but also minimo that

the value of slack variable can be controlled.

24,



UCLA SVM: Understanding C

Engineer Change.

X X
e The C parameter tells the SVM optimization % - i | - < o ¢
how much you want to avoid misclassifying o2 ] X L -
- O o
each training example. o2 \;((x %2 ';Ex
e For large values of C, the optimization will % % x %
choose a smaller-margin hyperplane if that o4 )@k:
hyperplane does a better job of getting all the X — Xy
. . . . e large ¢
training points classified correctly. @ 774; ¢
X 2
e Conversely, a very small value of C will cause o %o e o %o X
the optimizer to look for a larger-margin 550 % & go X
separating hyperplane, even if that 000 ;Ex 000 ;:x
. . . 000 Co©0
hyperplane misclassified more points. 86 oo X X Sonbln X
Oolo 0,0
Xq Xy

lowc largec

Reference: https://stats.stackexchange.com/questions/31066/what-is-the-influence-of-c-in-svms-with-linear-kernel




UCLA

Engineer Change.

Additional: SVM on 1-dim data

0

Tre /F) : P‘F
min u, w + Z 0
w.b

subject to Ui (1' r; + b) > 1 —fe;)e; > 0, Vi

e Whatif Cis super large, i.e. C— +inf? #oU= £~ ("/ D) / = /
What is C is super small, i.e. C— 0 (a very small positive number, such as 0.0001)?

/\), I(L 06 09
- -sﬁ(-(#ﬁ+ +
O o‘hfr O -
-3 2!-\1f L4l #2 +3
— | =

#St/cq’ X?ﬂw




UCLA

Engineer Change.

Additional: SVM on 1-dim data (code)

Colab link:
https://colab.research.google.com/driv
e/1Ru_gN8UikD fGY3DfarHTfXQQDg4
b-D4?usp=sharing

[1]

[2]

(3]

|53

(5]

(61

from sklearn import svm
import numpy as np

X = [[-3], [-2], [-1], (0], [1], [2], [3]]
y=1[0,0,0,1, 1, 1, 1)
X, y = np.array(X), np.array(y)

def print_svm decision(X, y, C):
clf = svm.LinearSVC(C=C)
clf.fit(X,y)
decision_function = clf.decision_function(X)
support_vector_indices = np.where( (2*y-1)*decision_function <= 1)[0]
print("Support Vectors are: ", support_vector_indices)
print("Predicting y=wx+b:", decision_function)

print_svm decision(X, y, C=1)
Support Vectors are: [2 3]

Predicting y=wx+b: [-2.36363017 -1.45454339 -0.54545661 0.36363017 1.27271694 2.18180372
3.0908905 ]

print_svm decision(X, y, C=0.5)

Support Vectors are: [2 3 4]
Predicting y=wx+b: [-1.75000807 -1.08333882 -0.41666956 0.24999969 0.91666894 1.5833382
2.25000745]

print_svm decision(X, y, C=0.1)

Support Vectors are: [1 2 3 4 5]
Predicting y=wx+b: [-1.09999783 -0.69999856 -0.29999929 0.09999998 0.49999925 0.89999852
1.29999779]

Case: C is suffciently small and every vector is within the margin, i.e. every data point is a support vector.

(7]

print_svm decision(X, y, C=0.01)

Support Vectors are: [0 1 2 3 4 5 6]
Predicting y=wx+b: [-0.44399465 -0.29014848 -0.13630231 0.01754386 0.17139003 0.3252362
0.47908237]



UCLA

Engineer Change.

Ensemble: Bagging and Boosting

Bagging

“Parallel Learner” 7\

initial dataset L bootstrap samples

traln a weak model

L o %- and aggregate it to

the ensemble model

Boosting anes?

“Sequential Learner”

oy

%" QI
2 % |}
o g

weak learners fitted on
each bootstrap sample

ensemble modael (kind of average
of the weak learners)

update the training dataset
O (values or weights) based on the
current ensemble model results

= =

+ 5 154 + 3

0 o“O . d’o
7z % B 7z % B

+H3

‘4 ‘% Modeg




UCLA

Engineer Change.

Ensemble: Bagging (Bootstrap Aggregation)

e “Multiple” dataset and multiple clg\z,%iﬁer

Kfold
Cross
Validation
for
Sampling

trainin/g<>7'nple

00000
00000
9000 —

classifier 1
[ X JoX I ]
Random Forest
1 JoX Jo)
o000
20000 — classifier 2
00000
Decision Trees
0000
o900 00

(X XeX I — classifier n

vee

Extra Trees

bootstrap samples

Bagging Classifier Process Flow

m

f/s"'@

—»

test data

@
FRex |

Y L.
.0

|

ensemble
classifier

Bagging Classifier

|

predictions




UCLA Ensemble: Bagging (Random Forest)

Engineer Change.

e Single: Decision Tree = Bagging: Random Forest

Dataset

Decision Tree-1 Decision Tree-2 Decision Tree-N

Result-1 Result-2 Result-N

Lv Majority Voting / Averaging

Final Result




UCLA Ensemble: Boosting (Adaboost)

Engineer Change.

e Given: N samples {x,,y,}, where y,, € {+1, -1}, and some way of
constructing weak (or base) classifiers
@ Initialize weights wi(n) = %— for every training sample

@ Fort=1to T
@ Train a weak classiﬁsing current weights w;(n), by

minimizing the weighted—ciassification error
&= wi(n)lyn # he(za)] 1. Calculating error

@ Compute contribution for this classifier@ 5 log ===t
© Update weights on training points

o—_7

wi1(n) oc wi(y

3. Reweighting
and normalize them such that ) w,} training points

@ Output the final classifier
onseud/O

Bagemy Classifier

hlz] = si




UCLA Ensemble: Adaboost Loss Function

Engineer Change.

e Exponential loss, instead of 0/1 loss

B
== ()-1 loss
= hinge loss
3r === crogs-entropy loss
= cxponential loss
2 2
e
1
0



UCLA

Engineer Change.

Multi-Class Classification: Two modes

Given C classes and N data points each class:

Comparison One-vs-one One-vs-rest (all)
. e \

# Binary Classifies Z CC-1) C

# Training Data 24 ow C- /(/

Pros

Cons

One-vs-all (one-vs-rest)

>

A
AL xx x
X5 X

0
°&o

A Class |: %
O Class 2:
X Class 3:

h 7




UCLA

Engineer Change.

Logistic

Regression: Multiclass Case

( b
Data Input Features
Model Logistic Logistic Logistic Logistic
Collection Regression Regression Regression Regression
Model 1 Model 2 Model 3 Model 4
"""""""" @ X =L ﬁ))(zi e K= ﬁz)(:a |
Predictions " p1 | \/}/ Ea Pa o> Pa o
-/ QL y C)/ Y - Y / S
Cross-entbro;ay Loss W ‘ 25> /é s “« >
Labe
L1 L2 L3 L4
(truth) g



UCLA Multinomial Logistic Regression ¢ 7

Engineer Change.
Model IQL M{-&
For each class Cy, we have a parameterve and odel the

probablllty of class C} as

Model: iﬁ({? Oé) Gl = Ck|$ 0.,...,0x) @ ZD;;%TMS s called softmax

Decision boundary: assign « with the

hat is the maximum of
b argmax; P(y = Cy|z; 01, ...,0K) — argmax, 0f

01 007

K
Likelihood Zlog P(?nlwn; 01,...,0k) = Z log H Ply = Crlen; By v O )%
n n k=1

/)
g}nt
L S/ =Z Yni\log P(y = Ci|n; 01, .. .,0k)
n k



UCLA MLR: Cost Function and Optimization

Engineer Change.

K
ZlogP(ynan,el, .. ,BK) = ZlogH P(y = Ck|wn;017 .. 'aoK)ynk
n n =1

Likelihood
=3 ynklog P(y = C|an; 01, .. .,0k)
n k
J(01702a°" aoK) = _Zzynklogp(y = Cklwn;01102,"'79K)
n k
GT

Cost Function = —ZZynklog —

e r

i (z: )
n k k!

Optimization Convex = SGD



UC"A Multiclass Classification in Neural Nets

hidden

3 apple: yes/no? %

L o ®gq0 Ly
- Ay, ..3..‘“. 3
) DY X ® . °
bear: yes/no? o . LS - E
% ’ 3 ': 3, ". ¢
i candy: yes/no? 5 ct O g % Ve .E »

dog: yes/no? ‘e ﬂ, %-'i o NolMe
* 0’ o DgBo o0 °
o & o ®
‘ ) @ g

egg: yes/no?

5 separate binary classifiers
Key: sharing the same hidden layers with different weights at the end

https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/one-vs-all
http://www.briandolhansky.com/blog/2013/9/23/artificial-neural-nets-linear-multiclass-part-3




UCLA Softmax Layer in Neural Nets

Multi-Class Classification with NN an - Implementation in PyTorch?

—forch. kac-ﬂs,s Zn”ﬂ?f/[% s )

Hn X3
7/,-&{ c R 0-,{6:/)

Jer /5#”

ply=jlx) = = = J
Y i €TRETH) Credit:
https://developers.google.com/machine-learning/crash-cour
se/multi-class-neural-networks/softmax



UCLA Evaluation: Binary Classifier

Engineer Change.

e Diagnostic testing table

True condition
Total S  Condition positive Accuracy (ACC) =
, Condition positive Condition negative Prevalence = m+ popuTat 3 True positive + ¥ True negative
population 9 on 3 Total population
= :
S P'ed'cfed False positive, Positive predictive value (PPV), Precision || False discovery rate (FDR) =
S condition True positive - | = ¥ True positive > False positive
§ positive b iRl = ¥ Predicted condition positive 3 Predicted conﬁmon positive
B Predict ) :
° False negative, False omission rate (FOR) = Negative predictive value (NPV) =
-g conditi = True negative 3 False negative 3 True ne%llve
& negatiy 3 Predicted condition negative Cls on negative
l True positive rate/{] TPR
- . Positive likelihood ratio (LR+) = EPR
probability of dete Diagnostic odds F, score =
o (00R) = (2. i Rl

| Specificity (SPC), Selectivity, Tr

= S False | tive _ _ 2 Trueneg =
T2 Conamon positive rate (TNR) = 2 ition negative

FNR

Negative likelihood ratio (LR-) = TNR

Credit: https://en.wikipedia.org/wiki/F-score




UCLA Evaluation: TP, FP, FN, TN & Two Types of Errors

Engineer Change.

Actual Values

Predicted Values

Credit: https://devopedia.org/confusion-matrix




UCLA Evaluation: Binary Classifier

Engineer Change.

e Precision and recall

relevant elements
T 1

false negatives true negatives

® o ® o (o)

selected elements

Credit: https://en.wikipedia.org/wiki/F-score

How many selected
items are relevant?

[i4
Precision = —

TrE

How many relevant
items are selected?

u—ly

A/




UCLA

Engineer Change.

Evaluation: Example

e Calculation from confusion matrix

Actual Class

Actual class
POSITIVE
(spam =2 )

Predicted Class
i ~
Positive Negative
- Sensitivity
False Negative (FN. nsitave
Positive | True Positive (TP) . : eflﬂ ;vc( ; ) L
PN (T
3 False Positive (FP) . Specificity
Negative Type T Bem True Negative (TN) ™
pe—— (TN + FP)
s Negative Predictive Accuracy
Precision
P Value TP +TN
T— ™ (TP +TN + FP + FN)
TP+ FP) ST
(TN + FN)

Actual class
NEGATIVE
(normal &2 )

Predicted class
POSITIVE
(spam )

'FALSE POSITIVE (FP)
==

Credit: https://towardsdatascience.com/confusion-matrix-and-class-statistics-68b79f4f510b

Predicted class
NEGATIVE
(normal @ )

FALSE NEGATIVE (FN)
=28




UCLA  Evaluation: Multi-class Confusion Matrix

Engineer Change.

Predicted class | Predicted class | Predicted class EStlmate
POSITIVE NEGATIVE NEGATIVE Cp---Cry Gy Chiqses Gy
(spam & ) (ad &) (normal & ) g
Actual class =
POSITIVE 5
(spam = ) = true negative
2
true positive
Actual class - = 3
NEGATIVE =8 o ;
— (o)) false negative
(ad = ) , ko]
e % false positive
Actual class - , = '.6
NEGATIVE 28 =
(normal = ) 5 W]

Credit: https://devopedia.org/confusion-matrix




UCLA Evaluation: Other Metrics & Curves

Engineer Change.

ROC [Wiki]

Area under the ROC Curve: AUC/AUROC
A random classifier has AUROC = Y.

A perfect classifier has AUROC = 1.

7

1[p>+

ROC_CURVE —

TRUE POSITIVE RATE
o <
F3

01+

I W T AN FPR =D

FALSE POSITIVE RATE

Others: Precision-Recall Curve and AUP '
| . {t'=09]5 '
In-class Exercise: Building ROC Curves

Instance | Confidence | Actual
in positive | class

9 0.99 1

7 0.98 1

1 0.72 0

2 0.70 .

6 0.65 1
0.51 0

3 0.39 0

?’ 0.24 3 | =
‘ oT |0
8 0.01 0
7



UCLA Evaluation: Model Comparison

Engineer Change.

ROC Space
1 T T T T T T T
Pefect Classification /
0.9} ,/ -
A B c c L
08} 4 .
TP=63 || FP=28 |91 TP=77 | FP=77 |154 TP=24 | FP=88 |[112 TP=76 | FP=12 |88 : P
07 ,/ —
,I
FN=37 | TN=72 [109 FN=23 | TN=23 |46 FN=76 | TN=12 |88 FN=24 | TN=88 [112 vl 2 J |
= Vg
= /
100 100 200 100 100 200 100 100 200 100 100 200 %05 A
W = / -
TPR = 0.63 TPR =0.77 TPR=0.24 TPR =0.76 S oA
& Better P
FPR=0.28 FPR =0.77 FPR =0.88 FPR=0.12 R o4 \ o i
PPV =0.69 PPV = 0.50 PPV =0.21 PPV =0.86 k. i
p \ il
F1=0.66 F1=0.61 F1=0.23 F1=0.81 5 \ 2
/
ACC =0.68 ACC =0.50 ACC =0.18 ACC =0.82 02~ S Worse % 7
l/’
0.1t #¢ -~
4
’I
R 1 | T L1 1 I
(1] o1 02 03 04 05 06 07 0.8 09 1

FPR or (1 - specficity)



UCLA  *precision/Recall in Information Retrieval

Engineer Change.

/mfﬁ‘m« VA
l . ' . l = relevant documents for query 1
{80 irrelevant docs) (20 relevant docs)
IDIUUIUUII
(25 retrieved docs)

=
Recalll 0.2 0.2 04 04 04 06 06 06 08 1.0
Precision 1.0 0.5 0.67 05 04 0.5 043 0.38 0.44 05

' l . = relevant documents for query 2
Precision = 15 / 25 = 0.60 Recall =15 /20=0.75 Ranking #2 D . I_J I_J l I_J l I_J LJ |_J

Recall 0.0 0.33 0.33 0.33 0.67 0.67 1.0 10 1.0 1.0
Precision 0.0 0.5 0.33 0.25 0.4 0.33 0.43 0.38 0.33 0.3

(10 irrelevant) (15 relevant)




UCLA Evaluation: sklearn Implementation

Engineer Change.

e Official Doc (stable version):
https://scikit-learn.org/stable/modules/model evaluation.html
e Some helpful demos:

o Precision-Recall:
https://scikit-learn.org/stable/auto examples/model_ selection/plot_precision_recall.html#sp

hx-glr-auto-examples-model-selection-plot-precision-recall-py

o Confusion matrix:
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion matrix.html#skl
earn.metrics.confusion _matrix

o Receiver Operating Characteristic (ROC):
https://scikit-learn.org/stable/auto examples/model selection/plot roc.html#sphx-glr-auto-
examples-model-selection-plot-roc-py




UCLA Whiteboard

Engineer Change.
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UCLA Roadmap

Engineer Change.

e Announcement

e Kernels

e SVM

e PyTorch Q&A (PS3)



UCLA Announcements

Engineer Change.

e 5:00 pm PST, Feb 19 (Friday): Weekly Quiz 7 released on Gradescope.

e 11:59 pm PST, Feb 21 (Sunday): Weekly quiz?closed on Gradescope!
o Start the quiz before 11:00 pm PST, Feb 21 to have the full 60-minute time

e Problem set 3 released on CCLE, submission on Gradescope.
o Please assign pages of your submission with corresponding problem set outline
items on GradeScope.
You need to submit code, similar to PS2
Due on next week, 11:59pm PST, Feb 26 (Friday)

Late Submission of PS will NOT be accepted!




UCLA About Quiz 7

Engineer Change.

Quiz release date and time: Feb 19, 2021 (Friday) 05:00 PM PST
Quiz due/close date and time: Feb 21, 2021 (Sunday) 11:59 PM PST
You will have up to 60 minutes to take this exam. — Start before 11:00 PM Sunday
You can find the exam entry named "Week 7 Quiz" on GradeScope.
Topics: Kernels, SVM
Question Types
o True/false, multiple choices
o Some questions may include several subquestions.
e Some light calculations are expected. Some scratch paper and one scientific calculator
(physical or online) are recommended for preparation.



UC‘-A Quiz 6 Review: Question 1
[Point: 2] Variables a,b,c,d, e, f € R satisfy 7[[5/ P ) \L [[ﬂ,é)

c=o(wy-a+wy-b) N L
d = tanh(ws - a + w4 - b) (7( C, YL) dla, =)
e = ReLU(ws - a + wg - b) - = ) 6(&/5}
f=o0(w; -d+ws-e)
g=o0(wo-c+wy- f)

where w;,i = 0,...,9 are constants. Which of the following statements is true? Hint: It would be helpful

to draw a computational graph.

- 0y _dg 0c 29 %
ot

da  dc Oa
i o ot o of o4 2f
()al_\()a da 2 . ¥ 0 a(/ 3&




UCLA Quiz 6 Review: RNN Example

Engineer Change.
1le\) : (‘é’)/) n ) ,\,(‘6"‘ )
W72 ; :
Let’s consider a simple RNN structure: /’7 \-> y
@ e

h(t) R L W 2 ®)
— Y=y, Y R— —
! Y

where t = 1,2,....T, z'* is the input and y'*) is the output. h{?) is initialized as 0. Which of the
following statement(s) is/are true? Note: To make things simpler, we treat all the variables as scalars.

A
e —
o, ) X b=3
\y Hh!t)
oh' W, \/ f: 2

ozt

y 9.,(t) e | 1 = y O ;
dy —p® \/ _é: 2 3

aw,

df—‘ =W, B l ﬁ) l/\H' 27, - - 7((;
Ib) Z‘j/
_DL__ _ L\H"” )W h(t) 2‘/))(

oWy, /W\(1




UCLA

Engineer Change.

Quiz 6 Review: Question 6

[Point: 2] What is true about the VC-dimension of linear functions (i.e., hyperplanes) in R??

A. There is a set of 3 points that can be shattered. | /=
B. Every set of 3 points can be shattered. ${

C. There is a set of 4 points that can be shattered.
D. Every set of 4 points can be shattered. ?L




UCLA Kernels

Engineer Change.
b
e Motivation: Transformed feature space Rt
i S
e Basicidea: Define K, called kernel, such that: ; i\\\ 24
K:XxX—-R ®(z) ?(y) = K(z,y)

. . .. . (a) (b)
which is often as a similarity measure. )

e Benefit:
o Efficiency: is often more efficient to compute than and the dot product.
o Flexibility: can be chosen arbitrarily so long as the existence of is guaranteed

(Mercer’s condition).
A ¢ )

Credit: https://cs.nvu.edu/~mohri/icml2011-tutorial/tutorial-icml2011-1.pdf




UCLA Polynomial Kernels

er Change.

A Definition:
Vz,y e RY, K(z,y) = (z-y+

& Example:for N=2 and d=2,

C)c,l" c > 0.

K(z,y) = (191 + Z2y2 + ¢)°

p— 2 — —

N

Y3
2
2
V2192
Ve
V2cys2
C

by




UCLA Kernels: XOR Example

)(2A \/§€U1$2
(-1, 1) (LN O1L,+v2,—v2,-v2, 1)f (1,1, +v2,+v2,+v2,1)
o o e o
>XI > 2.’131
o o o ©
(-1,-1) (1,-1) (L,1,-v2,—v2,+v2,1) | (1,1,-v2,+v2,—v2,1)
Linearly non-separable Linearly separable by

129 = 0.



UCLA Other Kernel Options

Engineer Change.

Gaussian kernels: .
57 Also known as “Radial

K(z,y) = exp (—%) Lo #0. Basis Function Kernel”
Sigmoid Kernels: k@(,j?/ ({706) ﬁ/

K(z,y) = tanh(a(z - y) + b), a,b> 0.

Note: The RBF/Gaussian kernel as a projection into infinite dlmen5|ons commonly used in kernel SVM.

Yy +2x )
e /p( a 20=1
= exp(—x?) exp(—z" Zk 0 2% ——r— @)

exp(2zz’) Taylor Expansion

Credit: http://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/svms/RBFKernel.pdf



UCLA SVM: Visual Tutorials

Engineer Change.

e Links: https://cs.stanford.edu/people/karpathy/svmjs/demo/

[]

c=1.0 RBF Kernel sigma = 1.0



UCLA SVM: Margin

Engineer Change.

T
MARGIN(w, b) = min 2 ol b
n w2 wix<b=0

H:w p(x)+b=0

—_

o ———
o ~

- llwl|2




UCLA SVM: Start with the margin

Engineer Change.

Margin Lines -

WT@+b=1 wab+b=—1 //O

Distance between parallel lines of axi+bx2=c1/c2)

i lea — e
“rv HW” ;: wix, +b=1
Margin wab+b=\.1§’ e

b+ -b-1)| | 2

' Hint: what is the di b |
Iwll llwll T




UCLA SVM: Steps to understand SVM

Engineer Change.

1. Formulation of the Linear SVM problem: maximizing margin

2. Formulation of Quadratic Programming (optimization with linear constraints) —
Primal problem

3. Solving linear SVM problem with “great” math*

a. (Generalized) Lagrange function, lagrange multiplier
b. Identify primal and dual problem (duality) = KKT conditions

c. Solution to wand b regarding alpha

4. Support Vectors, SVM Classifier Inference
5. Non-linear SVM, Kernel tricks



UCLA SVM: Math Behind

Engineer Change.

e Slides: http://people.csail.mit.edu/dsontag/courses/ml13/slides/lecture6.pdf

e Notes: https://see.stanford.edu/materials/aimlcs229/cs229-notes3.pdf

*To show in hand notes



UCLA Whiteboard for SVM Math Foundation

Engineer Change.




UCLA. Linear SVM: Example for Practice
Given labeled data and alpha values

~ Positively labeled data points (1 to 4)

2 IR N
(D)) 2
* Negatively labeled data points (5 to 8) T 1 ’
?5/ 0 0 -1 . l > ‘ .
{(a)(1)-(1)-()} @
* Alpha values - " ’2 4
e @, =025 we 2% ) :
B j ~ )2,
* dy = 0.25 0 R .
* g =| 0.5 d’—' j:) J-/ /‘

* Others=0 |y= o45.1 (%) + o)é-l(j) +0.5(-) (l))z ( l;)

(



Linear SVM: Example for Practice
UCLA P

* Predict class of new point (4, 1)

Engineer Change. Questlons (/\l ( ) _(_97 D },{ ’é,
« Which points are support vectors? W ot b- ( /(}7\ 5
* Calculate normal vector of hyperplane:

: 220
* Calculate the bias term ‘j:' ( [)
W=
* What is the decision boundary? ¢ 1 e

(T»
O
[s]




UCLA

Engineer Change.

Linear SVM: Example for Practice
Predictions for new data

y < sign(w -

|

y < sign [Z a;yi (Z; - )+ b

'+ B) W= ) oYX

1

Using dual solution b=y — W.X

for any k where C' > a3 > 0

N

dot product of feature vectors of
new example with support vectors



Linear SVM: Example for Practice
UCLA neat P
Engineer Change. P l_ O t




UCLA Linear SVM vs Logistic Regression

Engineer Change.

e Decision boundaries?
e Loss functions?

— Hinge loss

— Zero-one loss
— Logistic loss

Reading: http://www-.cs.toronto.edu/~kswersky/wp-content/uploads/svm_vs_Ir.pdf

=




UCLA Non-linear SVM

Engineer Change.

- Datasets that are linearly separable (with some noise) work out
great:

F 0 x

« But what are we going to do if the dataset is just too hard?

o—& 00— *0—0——0—8—>
0 X

- How about ... mapping data to a higher-dimensional space:
s X2 "




UCLA Non-linear SVM

Engineer Change.

-General idea: the original feature space
can always be mapped to some higher-
dimensional feature space where the

training set is sw |

IR o . O: x— @(x) - .
B . " - _ . " [ .. 2 *




UCLA Support Vectors

Engineer Change.




UCLA

Engineer Change.

SVM: Kernel

5 1
maximizeq »,; o; — ) ZZ,] Q05 Y Y XX

> i aiy; =0
CZO%'ZO

- 1
maximizeq >3; 04 — 53 5 05Y;Yj

K(X’ia X])

K(x;,x5) = P(x5) - P(x;5)

> iay; =0
CZO%ZO




UCLA SVM: Kernel

Engineer Change.

e The linear SVM relies on an inner product between data vectors,
T
K(Xi7 Xj) — X Xj

e If every data point is mapped into high-dimensional space via transformation,
the inner product becomes,

K(xi,x5) = ¢ (xi) - d(x;)

e Do we need to compute ¢p(x) explicitly for each data sample? — Directly
compute kernel function K(xi, xj)



UCLA SVM: Kernel Function Example

Engineer Change.

n n
k(X, Z) _ (XTZ + 6)2 = (Z x(j)z(j) + C) (Z x(f)z(f) + C)
35020 420300

i=1 #=1
- Z (22D (20 + Z(\/%x(j))(\/%z(j)) + e
jl=1 j=1

Feature mapping given by:

P(x) = [x(l)Qaz(l)fU(Q)a---:33(3)23\/2—0513(1),@1(2),@x(‘3)’c]



UCLA SVM: Kernel Function Example

Engineer Change.

Polynomial kernel of degree /: K (X;. X;)=(X; X+ 1)"
Gaussian radial basis function kernel : K (X;, Xj) = e~ IXi—X;||% /20 /

Sigmoid kernel : K(X;, X;) = tanh(xX; - X; —0)

e Given the same data samples, what is the difference between linear kernel
and non-linear kernel? Is the decision boundary linear (in original feature
space)?



UCLA SVM: Overfitting

Engineer Change.

e Huge feature space with kernels: should we worry about overfitting?
o SVM objective seeks a solution with large margin.
o Theory says that large margin leads to good generalization.
o But everything overfits sometimes.
o Can control by:
m Setting C
m Choosing a better Kernel
m Varying parameters of the Kernel (width of Gaussian, etc.)



UCLA SVM: Understanding C

Engineer Change.

e The C parameter tells the SVM optimization 2 - | -
how much you want to avoid misclassifying QL X
each training example. - by 09““‘?( X
e For large values of C, the optimization will % %
choose a smaller-margin hyperplane if that 0
hyperplane does a better job of getting all the X
training points classified correctly. . o -\
e Conversely, a very small value of C will cause f o q[ | %
the optimizer to look for a larger-margin o 1O % X
separating hyperplane, even if that odo g:x
hyperplane misclassified more points. & Cc’) 0 X
Rol%
’ / X1 X1
lowe large ¢

Reference: https://stats.stackexchange.com/questions/31066/what-is-the-influence-of-c-in-svms-with-linear-kernel




UCLA

Engineer Change.

SVM: Demo of different kernels

Linear SVM

RBF SVM

Poly SVM Sigmoid SVM

<97

RBF SVM

S

RBF SVM




.....

UCLA Non-linear SVM: Example Practice

* Positivelv labeled data points (1 to 4)
((2):(=2)(2)(32);

* Negatively labeled data points (5 to 8) o
{(”(-:)(::)(_:)} | S T S

* Non-linear mappi :

-i—J"_,_v
I 4—.1'1

(2)=1 ()

) if V’f'}, +z5>2

otherwise



UCLA Non-linear SVM Example EiL)

\"‘\-.. ........

~ New positively labeled data points (1 to 4)

{(2)(2)(5)(6)} )

* New negatively labeled data points (5 to 8) o

() (2)(3)(7)) ]

* Alpha values % I
- 3
*a; =| 10 T 6 8 10 B
* a5 =| 1.0

* Others=0




UCLA Non-linear SVM Example

« Which points are support vectors?
* Calculate normal vector of hyperplane: w

* Calculate the bias term
* What is the decision boundary? ¥
* Predict class of new point (4, 5) 2 ’ -




UCLA Plot




UCLA Non-linear SVM Solution

Engineer Change.

e Decision Boundary

y < sign [Z ;Y K(x;,x) + b



Samueli
UCLA Computer Science

Thank you!

Q&A



UCLA SVM Dual Problem: How to optimize?

Engineer Change.

e The answer is Sequential Minimal Optimization (SMQO) Algorithm.

e Basicidea: optimization problem of multiple variables is decomposed into a series of subproblems
each optimizing an objective function of a small number of variables, typically only one, while all
other variables are treated as constants that remain unchanged in the subproblem.

e Formulation:

1
T . 2 2., T
maximize: L(a,-, ij) =q; + a; — —2 (ai X, X + (ijj X + QQiajyiiji Xj)

—oiyi | > omynXE | xi—oy; | D anynxt | x;
nF#i n#j

1
=qwo; + Oéj — 5 ((X%K“ + angj + 2aiajyiyjKij)

—ith Y nlnKni— ity Y, OnYnKn;
’n?él,] n#inj
N
subject to: 0= sl = G, Z Ontln. =10

n=1



UCLA Whiteboard

Engineer Change.

e C(Content



Samueli
UCLA Computer Science

CS M146 Discussion: Week 9
Naive Bayes, Clustering (K-Means, Gaussian
Mixture Model)

Junheng Hao
Friday, 03/05/2021



UCLA Roadmap

Engineer Change.

e Announcement
e Naive Bayes
e K-Means

e Gaussian Mixture Model



UCLA Announcements

Engineer Change.

5:00 pm PST, Mar 5 (Friday): Weekly Quiz 9 released on Gradescope.

11:59 pm PST, Mar 7 (Sunday): Weekly Quiz 9 closed on Gradescope!
o Start the quiz before 11:00 pm PST, Mar 7 to have the fulL60-minute time

Grading update: Lowest two quiz scores are dropped. The rest é quizzes are counted
into final grading.

Problem set 4 released on CCLE, submission on Gradescope.
o Please assign pages of your submission with corresponding problem set outline
items on GradeScope.
You need to submit code and the results required by the problem set
o Due on next Friday, 11:59pm PST, Mar 12 (Friday)

Late Submission of PS will NOT be accepted!




UCLA About Quiz 9

Engineer Change.

Quiz release date and time: Mar 5, 2021 (Friday) 05:00 PM PST
Quiz due/close date and time: Mar 7, 2021 (Sunday) 11:59 PM PST
You will have up to 60 minutes to take this exam. — Start before 11:00 PM Sunday
You can find the exam entry named "Week 9 Quiz" on GradeScope.
Topics: Naive Bayes, Clustering
Question Types
o True/false, multiple choices
o Some questions may include several subquestions.
Some light calculations are expected. Some scratch paper and one scientific calculator
(physical or online) are recommended for preparation.
Note: This is the last quiz in this quarter. Highest [ quiz scores are counted for final
grading.

Prof. Sankararaman’s post on updated quiz grading:

https://campuswire.com/c/GB5E561C3/feed/438




UCLA Updates: Final Exam

Engineer Change.

Open book and open notes, on GradeScope: “quiz”-like exam

e Start attempting the exam from 8:00 am PST on March 15; Submit your exam before
8:00am PST March 16 (No extensions). = 24h time window
Exam duration: 3 hours (time limit after start the exam)

Type: True/false and multiple choice questions (free text boxes are given for
justification)

e The instructors will be available to provide clarifications on CampusWire (visible for
everyone) from 8:00am-11:00am on March 15. Later questions on Campuswire may not
be answered.

e Some calculations are expected.

MUST READ: Official post about final exam on Campuswire:
https://campuswire.com/c/GB5E561C3/feed/437




Engineer Change.

UCLA Naive Bayes: Model Summary

AT \YA

pPxy) I,

P(X=2,Y =c)=P(Y =) [[ P(Xa=zalY =)
("'\/~d=l —_—————

;y\fw ducc =P =¢) l;IP(k|Y = )% =/1rcIkIeg
s i

e Defines ajoint distribution

e Learning problem formulation

Training data D = {(zn, y) ey = D = {({eme s, vn)} ey Constraints

. . N
Objective £ = log P(D) = log [ y P(@nlyn) (m2,6%) = argmax 3 _logmy, + 3 zuk log by, k
n=1 n n,k
, — —MAP
e Solution
~ #of data points labeled as c S X _
@ ) > r) =1
c 5 3

#of times word k shows up in data points labeled as ¢
% - i
o #data points labeled as ¢ 9 b



UCLA Naive Bayes: Derivation

Engineer Change.

A short derivation of the maximum likelihood estimation

To maximize
Z Rnk lOg eck

n:yn=c,k

We use the Lagrangian multiplier

Z Znk log ek + A (Z Ock — 1)

n:yn=c,k
M
Taking derivatives with respect to 6. and then find the stationary point
Znk 1
( Z —E‘“) +)\=0—)0Ck=—x Z Znk
n n:Yp=c

Apply constramt Ek = 1 plug in expreSSIon above for 8., solve for ),




UCLA Naive Bayes: Example

Engineer Change.

e #docsin Class 1@#docs in Class 2(75 )

Index | Word CountinClass1 | Countin Class 2
I 1 9
2 like 2 1
3 machine 3 9
4 \ learning 4 1




UCLA Naive Bayes: Learning (Step 1)

Engineer Change.

e How to obtain the parameters in Naive Bayes classifier? (shown in class)

.25
c-1 F,+h‘lci U-%T—’Zp
— C: 2 2
Index  Word | #inc1| [#incC2 ya
1 I 1 9

like

2
machine 3
4

Aw DN

learning

1
9
| 0 1 A
fotly \/lv 20 " ;q,ww(“




UCLA

Engineer Change.

Naive Bayes: Predicting

e Predicting new document: {I:3, like:1, machine:5, learning:1} (shown n class) )

Index Word #inCl1 | #inC2
1 I 1+¢1| 9+]
2 like 2 +1 111
3 machine 3 ¢ 9 x1
4 learning 4 4] 1+
5 Love U4l 0+1

P(X y-1) - P(Y 1)

/\

PX.Y=2) = Py-2)- T

<

1 0
n

2,,6_ /Z
T

’((,u)

e One further question: Ho& to&redlct new document: {I:3, like:1, machine:5, learning:1,

love:2} = Label Smciothlrg

90‘4\ =0

(
=1 l(: 5 ’
(> Lo

*
0.

(1=

—~

l

pu—

-—

Plloc [ Y=1) = 9K
P(‘Iav&“(\‘/;2’> :49’%

it

'y

—



UCLA  Naive Bayes: Summary, Pros and Cons

Engineer Change.

e Alinear classifier (same as logistic regression)
e Generative model, modeling joint distribution (probabilities) — What is the model
assumption?
e Pros:
o Fast and simple compared to other complicated algorithms, easy training
o Works well with high-dimension data such as text classification
e Cons:
o Strong assumptions (feature independency)
o Not fit to regression
o Smoothing is somewhat required for generalization



UCLA

Engineer Change.

Generative vs Discriminative Models

e Training classifiers involve estimating f: X = Y, or
P(Y[X)

e Generative classifiers = “distribution”

(@]

(@]

(@]

e Discriminative Classifiers = “boundeary

Assume some functional form for P(Y), P(X]Y)
Estimate parameters of P(X|Y), P(Y) directly from
training data

Use Bayes rule to calculate P(Y|X)

Actually learn the underlying structure of the data

J

\)

Assume some functional form fq
Estimate parameters of P(Y|X) directly from
training data.

Learn the mappings directly from the points to the
classes

e Generative models

o Naive Bayes
o HMM

e Discriminative models
o Logistic Regression

o Neural Network / Perceptron
o SVM

Q: With the aim of classification
only, which type of models may less
expensive?

https://stats.stackexchange.com/questions/
12421 /generative-vs-discriminative




UCLA Naive Bayes vs Logistic Regression

Engineer Change.

e Compare the learning and prediction procedure on Naive Bayes and Logistic
Regression in spam classification example

T O J( /;T ) /Za é/ %lé
* (

Ce

:ﬁ;\/\/




UCLA

Engineer Change.

MLE vs MAP

From Bayes rule:

Comparing MAP and MLE: [Link]

Likelihood Prior

How probable is the evidence How probable was our hypothesis
given that our hypothesis is true? before observing the evidence?

p QSN P(H)
Pt | e)= ( |[§12)
Posterior Marginal

How probable is the new evidence
under all possible hypotheses?
P{e) =3 Ple | H)) P(H))

How probable is our hypothesis
given the observed evidence?
(Not directly computable)

weq e PLOIX)

OrLE = arg max log P(X]0)
0 ’

= arg maxlo P(z;|0

g gl:[ (2:[6)

= argmax Y log P(z;|0
gz Z g P(zi|0)

Orr4p = arg max P(X|60)P(8)
0
= argmax log P(X|0) + log P(6)
6

= arg max log H P(z;]0) + log P(6)
4 i

_ log P(;]0) 4 log P(6
arg;naxzizog (z:16) 4 log P(6)




UCLA Clustering

Engineer Change.

e Clustering: Input / Output / Goal of clustering analysis
o Large amount of unlabeled data in real life

e Supervised learning v.s. unsupervised learning
e Unsupervised learning cases: Clustering and dimension reduction

e Clustering algorithm examples in this course:
o K-means
o Gaussian Mixture models

e Dimension reduction algorithm examples in this course:
o PCA



UCLA

Engineer Change.

Supervised learning / Unsupervised learning

Continuous Discrete

Supervised Learning  Unsupervised Learning

classmcgt:op or clustering
categorization
regression d|men5|o.nal|ty
reduction

Classical Machine [Learning

y {
9‘ \Y
as

Supervised [earhing

( Pre Categorized Data |
Predications ¢ Predictive Models

v\

Classification Regression

( Divide the { Divide the
$ocks by Color | Ties by Lengtti )

E#. Jdentity E8. Market

Fraud Detection Forecasting

wm D”'Ve,,

(Jnsupervised [earning

( Unlabelled Data )
Pattern/ Structure Recognition

N Na

rin —
Clustering Agssociation

( ldentify
Cequences |

( Divide by
Simitarity |

E8. Targeted

Marketing

,'g Customer
Recommendation



UCLA

Engineer Change.

Applications of ML Categories

Personalized marketing

Recommendation engines

Insurance / credit underwriting
decisions

Fraud detection

Spam filtering

Demand sensing

Predictive maintenance

Sales performance prediction

People analytics

Customer grouping or
clustering, e.g. discovering
groups of similar visitors to a
website or discovering that
a group of patients respond to
the same treatment

Anomaly detection or finding
outliers in the data for better
fraud detection or security
incident identification

Product affinity/association
rule engine, e.g. discovering
which two products sell
best together

Supervised learning Unsupervised learning Semi-supervised

Used in applications where
labeled data is scarce/
expensive
Speech analytics
Image classification
Web content classification

Medical predictions

Protein sequence classification

Other “learning”: Self-supervised learning, reinforcement learning




UCLA K-means

Engineer Change.

e Demol:
http://stanford.edu/class/eel103/visualizations/kmeans/kmeans.html

e Demo 2:
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/




UCLA

Engineer Change.

K-means: Steps

The initial data set

K=2
 —

Arbitrarily
partition
objects into
k groups

Partition objects into kK nonempty

subsets
Repeat

« Compute centroid (i.e., mean
point) for each partition

= Assign each object to the
cluster of its nearest centroid

Until no change

Loop if
needed

B

Update the
cluster
centroids

<

Update the
cluster
centroids

+ ° +
+ +
Y L
.
L]
Reassign lobjects
+ ° +
. +
. +
e




UCLA K-means

Engineer Change.

e Distortion measure

N K
J({rne} {pe}) = D> rrkllzn — pll3
n=1 k=1
e Key idea of K-means algorithms:
o Step 1: Partition into k non-empty subsets (select K points as initial centroids)
o Step 2: Iteration: Update mean point and assign object to cluster again
o Step 3: Stop when converge
e Partition-based clustering methods

e Can be considered as a special case of Gaussian Mixture Model (GMM)



UCLA K-means

Engineer Change.

e QI1: Will K-means converge?
e (Q2: Will different initialization of K-means generate different clustering
results?



UCLA K-means

Engineer Change.

e QI1: Will K-means converge?

e Al:Yes. k
o = Z Z d(z;,c;)?
J=1C(i)=j
e Q2: Will different initialization of K-means generate different clustering
results?

e A2:Yes. Initialization matters!




UCLA

Engineer Change.

K-means: Discussion

Efficiency: O(tkn) normally k,t are much smaller
than n — efficient
Can terminate at a local optimum
Need to specify k (or take time to find best k)
Sensitive to noisy data and outliers = K-medoids
Different sizes and variances
Not suitable to discover clusters with non-convex
shapes
Many variants of K-means:

o K-means++, Genetics K-means, etc.

......



UCLA *Hierarchical Clustering

e Method

o Divisive (Top-down)

©  Agglomerative (Bottom-up) Hierarchical Clustering

e Distance metrics
o Single linkage

Complete linkage Agglomerative | | Divisive |

Average linkage

-
Centroid e S i
Medoid e ‘ l |

e el

o O O O




UCLA *Hierarchical Clustering

Engineer Change.

e Single Linkage e Complete Linkage °

1

- o R
L(7,s) =mm(D(x,,,x,;)) I(r,5) =t D %)) (r.s) WA ;; (X%)




UCLA Gaussian Mixture Model

Engineer Change.

Probabilistic interpretation of clustering?

We can impose a probabilistic interpretation of our intuition that points

stay close to their cluster centers
How can we model p(x) to reflect this?

0.5




UCLA Gaussian Mixture Model

Intuition

e We can model each region with
a distinct distribution

e Common to use Gaussians, i.e.,

e Gaussian mixture models
(GMMs) or mixture of
Gaussians (MoGs).

e We don't know cluster
assignments (label) or
parameters of Gaussians or
mixture components

05¢




UCLA Gaussian Mixture Model

Engineer Change.

Gaussian mixture models: formal definition @ .
%k

fue =

A Gaussian mixture model has the following density function for @

K
() = 3 (G (@l ) J

k=1 [ —

@ K: the number of Gaussians — they are called (mixture) components
@ pi and X mean and covariance matrix of the k-th component

@ wg: mixture weights — they represent how much each component
contributes to the final distribution. It satisfies two properties:

Vk, wp>0, and Ewk=1
k

The properties ensure p(x) is a properly normalized probability
density function.



UC‘-A Gaussian Mixture Model

GMMs: example

The conditional distribution between x and 2

[ (representing color) are

os “‘;:g p(z|z = red) = N(z|p1, 1)

| 2 p(x|z = blue) = N (x|p2, X2)
s p(x|z = green) =

The marginal distribution is thus

p(x) = p(red)N (z|p1, 1) + p(blue) N (x| p2, X2)
+ p(green) N (z|p3, 33)




UCLA

VLLA  GMM: Incomplete Data and EM algorithm

Parameter estimation for GMMs: Incomplete data
GMM Parameters

0 = {OJk, Kk, Elc:}£{=1

Incomplete Data

Our data contains observed and unobserved random variables, and hence
is incomplete

e Observed: D = {z,}
@ Unobserved (hidden): {z,}

Goal Obtain the maximum likelihood estimate of 8:

@ arg max £(6) = arg maxlog P(D) = arg maxz log p(x,|0)
= arg max Z log z P(Tn, 20|0)

n Zn

’\/\/\f
The objective function £(8) is called the incomplete log-likelihood.

Typical EM iterations

1.

2.

3.

Initialize B with some values

(random or otherwise)

Repeat

a. E=-Step: Compute ynk using
the current 6

b. M-Step: Update B using the
ynk we just computed

Until Convergence



UCLA EM Algorithms: Coin example (only M-step)

Engineer Change.

d Maximum likelihood :
Coin A Coin B
HTTTHHTHTH BiHES T
. 24
6=54 + - 0-80

HHHHTHHRHHAHA 9H. 1T

HTHHHHHTHH 8H,2T 9
f.=—-7=0.45
4H, 6T B 9+ 11

HTHTTTHHTT
7H,3T
24H,6T 9H, 11T

THHHTHHRTH

&

0000




UC'-A EM Algorithms: Coin example (EM)

JHTTTHHTHTH =22 22 =28H,28T
| € HHHHTHHHHH

JHTHHHHHTHH =2 H 08T ~1.8'H 021
JHTHTTTHHTT

JTHHHTHHHTH =59H,1.5T =271 H 0.5 T

=14H,21T ~26H,39T

=~45H,1.9T =25 H AT

~213H,86T ~11.7H,84T




UCLA GMM: E-Step

Engineer Change.

E-step: Soft cluster assignments Y (| o2 05 03 (%]
pb ” r

We define v,,i. as p(z, = k|zp, 0)
@ This is the posterior distribution of z, given x,, and @
@ Recall that in complete data setting 7, was binary j:lt n

® Now it's a “soft” assignment of x,, to k-th component, with x,,
assigned to each component with some probability

Given 6 = {wk, pr, Ek},‘i{:l, we can compute Y,% using Bayes theorefn:

Tnk = p(zn 7 klmn)
. p(wnlzn = k)p(zn = k)
B p(zn)
- p(xn|2, = k)p(z, = k) S N (x| pr, i )wy
Yo P(@nlzn = K)p(za = K)oy N(@alpw, Si)w




UCLA GMM: M-Step

Engineer Change.

M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier: L

7

log p(@n, 2,) = Z@Iegw + { Vn logN(wnln,E)}

Previously v, was binary, but now we define y,x = p(z, = k|x,) (E-step)

We get the same simple expression for the MLE as before!

Z TYnk 1
- "I = Dk

Z Yk (T pi) (Tn — ”’k)T

n Ynk

Intuition: Each point now contributes some fractional component to each
of the parameters, with weights determined by 7,



UCLA

Engineer Change.

GMM: Example (M-Step calculation)

! You’re given the 1-D data points x

@an 2 N v,
=1 0.5 0.5 A{\
I\)/ w = ! L y P
‘,O _ Z- /\) 7Wk /2 v 20 o
b 7 | _Z/ Yie ¥
- What’s the mixing weights after M-step? ﬂ/és Jﬁ_//
= ik
— What'’s the new vz?lues of means after M-step? o=
Wht W~
p-2 0 B0y . p5xlro2x2 1 0% 3+ [Xbo
T M =
W, = L{, 05 +02+ O € {
We = ftn=

(- 0D0BE(E T
A% L// <

th



UC‘-A GMM: Cheatsheet

Expectation (E) Step:

Calculate Vi, k

ng-A[(mi | fiz, 61)
Zf—l SN (x; | 1j,65)

where %, is the probability that z; is generated by component Cj. Thus, 4. = p(Cj|z;, &

Yix =

i),

Maximization (M) Step:

Using the 4

;1. calculated in the expectation step, calculate the following in that order Vk :

o = i1 Yik T &/
R N .
>,

i=1 Yik
A'v ~ N -
a2 i k(@i — )
O = = y
Ziﬂ Yik




UCLA GMM: Questions

Engineer Change.

e How does GMM relate to K-means? What are the similarities and differences?
e Will the GMM optimization process converge? (connected to K-means)



UCLA General EM Algorithms

Engineer Change.

e The EM algorithm is used to find (local) maximum likelihood parameters of a statistical
model in cases where the equations cannot be solved directly.

e Typically these models involve latent variables in addition to unknown parameters and
known data observations.

Example applied cases: K-Means, GMM
Reading: http://ai.stanford.edu/~chuongdo/papers/em_tutorial.pdf




Samueli
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Thank you!

Q&A
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Evaluation of Instruction s

E COMMENT

Reminder: You have until Saturday, March 13 8:00 AM PST to complete
confidential evaluations for CSM146 and Dis 1C (Junheng).
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CS M146 Discussion: Week 10
PCA, HMM, Final Review

Junheng Hao
Friday, 03/12/2021



UCLA Roadmap

e Announcement
e PCA

e HMM

o Q&A



UCLA Announcement

Engineer Change.

e Thereis no quiz in Week 10.

e Problem set 4 released on CCLE, submission on Gradescope.
o Please assign pages of your submission with corresponding problem set outline
items on GradeScope.
o You need to submit code and the results required by the problem set
o Dueontoday 11:59pm PST, Mar 12 (Friday)

e Final Exam: March 15 (Next Monday)
o “Quiz-like” exam, submission through GradeScope

Late Submission of PS and final exam will NOT be accepted!




UCLA Updates: Final Exam

Engineer Change.

Open book and open notes, on GradeScope: “quiz”-like exam

e Start attempting the exam from 8:00 am PST on March 15; Submit your exam before
8:00am PST March 16 (No extensions). = 24h time window

e You must start before 5:00am PST March 16 to use the full 3 hours. No late
submission time.

Exam duration: 3 hours (time limit after start the exam)

e Type: True/false and multiple choice questions (free text boxes are given for
justification)

e The instructors will be available to provide clarifications on CampusWire (visible for
everyone) from 8:00am-11:00am on March 15. Later questions on Campuswire may not
be answered.

e Some calculations are expected.

MUST READ: Official post about final exam on Campuswire:
https://campuswire.com/c/GB5E561C3/feed/437




UCLA

Engineer Change.

Supervised learning / Unsupervised learning

Continuous Discrete

Supervised Learning  Unsupervised Learning

classmcgt:op or clustering
categorization
regression dimensionality

reduction

Classical Machine [Learning

y (
9‘ \Y
as

Supervised [earhing

( Pre Categorized Data |
Predications ¢ Predictive Models

v\

Classification Regression

( Divide the { Divide the
socks by Color i Ties by Lengtt )

Es. ldentity F8. Market

Fraud Detection Forecasting

wm D”'Ve,,

(Jnsupervised [earning

( Unlabelled Data )
Pattern/ Structure Recognition

N Na

terin i
Clus g Association
{'DIYI(M:? Dy ( ldentify
Simitarity | Seqguences |
ES. Targeted Eg. Customer

Marketing Recommendation



UCLA | arge feature space and dimension reduction

Engineer Change.

e Disadvantages of having a large feature space

o More datais required
o Redundant features and more noise = Model

overfitting
o Algorithm’s simplicity and fewer assumptions

[Occam’s razor]

e Straightforward dimensionality reduction
o Feature elimination
o Feature extraction




UCLA PCA

Engineer Change.




UCLA

Engineer Change.

PCA: Formulation

W6 5

S R i

\\\\\

/
/8
e Dimension reduction as matrix decomposition
j( J_ /Q 0( V( VL VS
3 B > k
d 2
P Large table Small table
" 7| = X g Covaricrﬁémotrix eigenstuffs @@
n Z= KP ***** i o @@ *
T b :
| o= — = e e i s * ok %k 0% small i
***** W *
pvar’dbles VI/‘ ’
k principal T T : : : : : ;
components
:\g V X = Z P ***** e o ®
ﬂ ***** .
/.8 L .
iiiii .
n objects g n A A= U*VT *****
n




UCLA PCA: Geometric Interpretation

Engineer Change.

Feature 2

Column vector X2 Principal comp. Zp

PCA
—

) - ] =
Column vector X 4 Principal comp. Z4
N-gimensicnal space

!
| Only needed
direction

Credit: https://online.stat.psu.edu/stat508/lesson/6/6.3




UCLA PCA: Formulation in 1-dim (k=1) &

Engineer Change. LR

e Demo shown in whiteboard
W ! = Xﬂ ?é,@
S !
Oz = W Z(Z)
2




UCLA PCA Approach: Summarization

Engineer Change.

Steps:

Take the whole dataset consisting o@dimensional samples
Compute the d-dimensional mean vector (i.e., the means for every dimension of the
whole dataset) ]

: _ vl
Compute the cgvariance matri of}z[he whole data set
nveetors=ard cort ;

Compute eige corresponding eigenvalues

Sort the eigenvectors by decreasing eigenvalues and choose k eigenvectors with the
largest eigenvalues to form imensional matrix (where every column represents
an eigenvector) E

Use this dxk eigenvector matrix to transform the samples onto the new subspace.

Credit: https://sebastianraschka.com/Articles/2014 pca_step by step.html




UCLA PCA: Example

Engineer Change.

e Demo shown at: https://sebastianraschka.com/Articles/2014 pca_step by step.html




UCLA PCA vs Linear Regression

Engineer Change.

‘A:xlmlze variance

(squared distance)
of red dots in

Minimize residuals
(squared distance)
in this direction

this direction
Multiple linear regression Principal component regression
K 1 K A 1

X@ XE‘-T

=
=z
P4
P4




UCLA HMM: Concepts

Engineer Change.

e Markov Process: the next state depends on the current state

P(zi41]z1,. .. @) = P($t+@
e ~———— "

P(z1,...,21) = P(z1)P(22|z1) . .. P(2t]|2t-1)

| _ e
e Initial probability Play - Pin) Pinjze) = P2

@ o zn

e Transition probability

kxk
@i = P(Xey1 = 11X = j) € R

e Emission symbols

N
ei(b) = P(Y; = b| Xy = 1) - fé



UCLA  HMM: Computing probability of a sequence

e Assume uniform probability of starting in each st_arltes and transition probability matrix

(0.5 0.1) (0.0 (X0 %, %3)-(11.3)
woxt@ = | (0.3 [l0.0] Jo.4
o2llog (o6 )/ PX .x %)

Xi e Xa Xe X =wPix))- TL T

MHickolen D—%O—/ﬁéqc{) M ) ’
5
s



UCLA HMM: Most probable path

Engineer Change.

e Problem: Given a sequence of observations, what is the most probable sequence of

hidden states? . —
e Solution: Viterbi Algorithm Y T s 3 E
=2 XX Xt’l @

C @ vt(1) 0.01
0. mppy(1)

(=) va-o08
0.01 mppt 2)<1
0.20 mppt 2)=2
Vi-1




UCLA HMM: Viterbi/Dynamic Programming

Engineer Change.

e The most probable path with last two states ([, k) is the most probable path with state /

at time (t-1) followed by a transition from state [ to state k and emitting the observation
at time t.

’Ut__l(l)P(Xt == klxt—l = l)P(yt|Xt = k))
= ve—1()qieer(yt)

e Maximization process

I* = argmax; vy—1 (1) qries(ye)



Engineer Change.

HMM: Viterbi Algorithm Example [Link] A 3‘

Transition probability distribution

Current
Start
A

N s

ext

A B End

_[07 03 0

02 07 0.1

ol
B 0.7)0.2 0.1

Word
State | *Sx z y
Start | 1 0_ 0
A 0 4) 0.6
B 0 0.3 0.7

ALXxD. Y x 0F

- X =) ) - | >t 'l/,‘ -l
Uy(8)= PL&1Se)) - Plwse|$60) - Vi (S1) o

mod (S) = 2.4 wmrs



UCLA *HMM: Learning Parameters

Engineer Change.

e Solution: Baum-Welch algorithm

E 4

paEr:TIwn;ta;fsd to W Updated parameters

generate J‘ '{ from (multiple)

, observations
observations




UCLA HMM: Applications and restrictions

Engineer Change.

Speak Recognition Protein Structure Prediction

)=
g T~

Structure




UCLA

Engineer Change.

CSM 146: Summary

Model

Loss Function

Optimization

Theory

Others

Supervised Learning Unsupervised Learning
Decision tree, KNN K-means, GMM
Neural nets, PCA, HMM

0/1, square, hinge, exponential,
cross entropy (log)

MLP, MAE, SVM (dual problem, constrained)
Gradient descent (batch / stochastic)
EM algorithms

PAC learning, VC-dimension

Convexity/concavity, hyperparameters, overfitting and underfitting,
inductive biases, regularizations




UCLA Advanced Classes in AI/ML+

Engineer Change.

1. CS174A: Introduction to Computer Graphics (Prof. Asish Law, etc)

2. (CS247:. Advanced data mining (Prof. Yizhou Sun)

3. (CS240: Big data seminar / Graph neural network (Prof. Yizhou Sun / Wei Wang)

4. (CS260: Machine learning algorithms (Prof. Quanquan Gu/ Prof/ Cho-Jui Hsieh)

5. (CS22X: Algorithms in Bioinformatics / Advanced Computational Genetics /
Computational Methods in Medicine (Prof. Sankararaman / Prof. Eskin)

6. CS263: Natural language processing (Prof. Kai-Wei Chang / Nanyun Peng)

7. CS269: Seminars in deep learning foundations / natural language processing, etc. (Prof.

Quanquan Gu / Kai-Wei Chang / Nanyun Peng)

Other courses are taught in EE, Stats departments:

1. ECE 236B/C: Convex Optimization (Prof. Vandenberghe)

2. ECE 239AS Reinforcement Learning Theory and Applications / Neural networks (Prof. Lin
F. Yang / Jonathan Kao)



UCLA End-of-quarter Congratulations!

Engineer Change.

Professors: you made it to the end
of the semester. congratulations

Students:




Samueli
UCLA Computer Science

Thank you

for learning with us in winter 2021.

Good luck

as certified ML experts!
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E COMMENT

Reminder: You have until Saturday, March 13 8:00 AM PST to complete
confidential evaluations for CSM146 and Dis 1C (Junheng).




UCLA

Engineer Change.
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