

CS145 Discussion: Week 9

Frequent Pattern Mining, Sequential Pattern Mining & DTW

Junheng Hao Friday, 12/04/2020

Roadmap

- Part 1: Frequent Pattern Mining and Association Rules
 - Apriori
 - FP-Growth
 - Association Rules & Pattern Evaluation
- Part 2: Sequential Pattern Mining
 - GSP
 - PrefixSpan
- Part 3: Time Series
 - o DTW

Announcements

Homework #5	Due on 11:59 PM, Dec 4 (Friday, Week 9)	
Homework #6	Will be released on Dec 7 (Monday Week 10), due on 11:59 PM, Dec 14 (Monday, Final week)	
Project: Kaggle Deadline	Due on 11:59 PM, Dec 6 (Sunday, Week 9)	
Project: Final Report	Due on 11:59 PM, Dec 18 (Friday, Final week)	
Final Exam (100 minutes via CCLE)	Morning Session: Around 8:00-9:40 AM, Dec 16 (Wednesday, Final Week) Evening Session: Around 6:00-7:40 PM, Dec 16 (Wednesday, Final Week)	

Roadmap

- Frequent Pattern Mining and Association Rules
 - Apriori
 - FP-Growth
 - Association Rules & Pattern Evaluation
- Sequential Pattern Mining
 - GSP
 - PrefixSpan
- Time Series
 - o DTW

Basic Concepts

- Given a transactional database, two itemsets X and Y, and an association rule X
 - Absolute/relative support of X: absolute/relative frequency of X
 - A frequent itemset X (pattern X): support of X is no less than a minsup threshold
 - Support of X -> Y: probability that a transection contains X U Y
 - Confidence of X -> Y: conditional probability that a transection with X also contains Y

Closed Patterns and Max-Patterns

- An itemset X is closed if X is frequent and there exists no superpattern Y > X, with the same support as X (proposed by Pasquier, et al. @ ICDT'99)
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X (proposed by Bayardo @ SIGMOD'98)
- Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

Apriori

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length k candidate itemsets from length k-1 frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

Apriori: Example 1

0	Tid	Items Bought
U	1	Milk, Tea, Cake www.T
	2	Eggs, Tea, Cold Drink
	3	Milk, Eggs, Tea, Cold Drink
	4	Eggs, Cold Drink
	5	Juice www.T4Tut

Apriori: Example 2

Tid	Items Bought
1	Milk, Tea, Cake WW
2	Eggs, Tea, Cold Drink
3	Milk, Eggs, Tea, Cold Drink
4	Eggs, Cold Drink
5	Juice www.

	The State of the S	the second secon
CO	m Milk	2
1	Eggs	3
$\stackrel{/}{>}$	Tea	3
	Cold Drink	3
m	Juice	1
	Cake	1
	\downarrow	(3)
	Items Bought	3 Support
	Items Bought Eggs	\mathbf{C}
		Support
	Eggs	Support 3

- Grow long patterns from short ones using local frequent items only
 - "abc" is a frequent pattern
 - Get all transactions having "abc", i.e., project DB on abc: DB | abc
 - "d" is a local frequent item in DB | abc → abcd is a frequent pattern

<u>TID</u>	Items bought (ordered) frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$	
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	min_support = 3
500	$\{a, f, c, e, l, p, m, n\}$		
			$ \Omega $

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Sort frequent items in frequency descending order, f-list
- 3. Scan DB again, construct FP-tree

FP-Growth: Example

TID	Items
1	{a,b}
2	$\{b,c,d\}$
3	{a,c,d,e}
4	{a,d,e}
5	{a,b,c}
6	{a,b,c,d}
7	{a}
8	{a,b,c}
9	{a,b,d}
10	{b,c,e}

Transaction Database

min support = 2

F-list = a-b-c-d-e

Header table

Item	Pointer
а	
b	
С	
d	
е	

b:2

frequent itemset generation

TID	Items
1	{a,b}
2	{b,c,d}
3	{a,c,d,e}
4	{a,d,e}
5	{a,b,c}
6	{a,b,c,d}
7	{a}
8	{a,b,c}
9	{a,b,d}
10	{b,c,e}

F-list = a-b-c-d-e

null

$min_support = 2$

Transaction Database

Header table

Item	Pointer
а	
b	
С	
d	
е	

Pointers are used to assist frequent itemset generation

TID	Items
1	{a,b}
2	$\{b,c,d\}$
3	{a,c,d,e}
4	{a,d,e}
5	{a,b,c}
6	{a,b,c,d}
7	{a}
8	{a,b,c}
9	{a,b,d}
10	{b,c,e}

Transaction

Header table

Item	Pointer
а	
b	
С	
d	
е	

F-list = a-b-c-d-e

- Conditional pattern base for e:
 - {acd:1; ad:1; bc:1}
- Conditional FP-tree for e:

frequent patterns with e are: {ade:2, de:2, ce:2, ae:2, e:3}

(Relative) support

Support
$$\{ \bigcirc \} = \frac{4}{8}$$

Confidence

Confidence
$$\{ \bigcirc \rightarrow \square \} = \frac{\text{Support } \{ \bigcirc, \square \}}{\text{Support } \{ \bigcirc \}}$$

- Strong association rules
 - Satisfying minimum support and minimum confidence
 - Recall: $Confidence(A \Rightarrow B) = P(B|A) = \frac{support(A \cup B)}{support(A)}$

	£35
Transaction 1	9 9 %
Transaction 2	(4) (9) (9)
Transaction 3	
Transaction 4	(4)
Transaction 5	/ D 🕒 %
Transaction 6	
Transaction 7	∅
Transaction 8	Ø 0

Not all strong association rules are interesting

	Basketball	Not basketball	Sum (row)	
Cereal	2000	1750	3750	
Not cereal	1000	250	1250	
Sum(col.) 3000		2000	5000	

- Shall we target people who play basketball for cereal ads? play basketball ⇒ eat cereal [40%, 66.7%]
- Hint: What is the overall probability of people who eat cereal?
 - 3750/5000 = 75% > 66.7%!
- Confidence measure of a rule could be misleading

Lift

Lift
$$\{ \bigcirc \rightarrow \square \} = \frac{\text{Support } \{ \bigcirc, \square \}}{\text{Support } \{ \bigcirc \} \times \text{Support } \{ \square \}}$$

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

1: independent

>1: positively correlated

<1: negatively correlated

į.	E1
Transaction 1	9 9 %
Transaction 2	(4) (9) (9)
Transaction 3	(4)
Transaction 4	(4)
Transaction 5	Ø 🕑 🕒 🗞
Transaction 6	∅ 🕑 ⊝
Transaction 7	∅
Transaction 8	Ø 🖔

Support
$$\{ \bigcirc \} = \frac{4}{8}$$

Confidence
$$\{ \bigcirc \rightarrow \mathbb{I} \} =$$

Support
$$\{ \bigcirc \} = \frac{4}{8}$$

Rule	Support	Confidence	Lift
$A \Rightarrow D$	2/5	2/3	10/9
$C \Rightarrow A$	2/5	2/4	5/6
$A \Rightarrow C$	2/5	2/3	5/6
$B\&C \Rightarrow D$	1/5	1/3	5/9

Chi-Square Test

Question: Are education level and marital status related?

Marital Status by Education | n = 300

	Middle school or lower	High school	Bachelor's	Master's	PhD or higher	Total
Never married	18	36	21	9	6	90
Married	12	36	45	36	21	150
Divorced	6	9	9	3	3	30
Widowed	3	9	9	6	3	30
Total	39	90	84	54	33	300

Chi-Square Test

Marital status is related to education level.

Marital Status by Education Level | N = 300

https://www.spss-tutorials.com/chi-square-independence-test/

Chi-Square Test

- The *null hypothesis* for a chi-square independence test is that
 - two categorical variables are <u>independent</u> in some population.

Marital Status by Education Level | N = 300

- <u>Statistical independence</u> means that
 - the frequency distribution of a variable is the same for all levels of some other variable.

Expected frequencies are

• the frequencies we expect in our sample if the <u>null hypothesis</u> holds.

Expected Frequencies for Perfectly Independent Variables

	Middle school or lower	High school	Bachelor's	Master's	PhD or higher	Total
Never married	11.7	27.0	25.2	16.2	9.9	90.0
Married	19.5	45.0	42.0	27.0	16.5	150.0
Divorced	3.9	9.0	8.4	5.4	3.3	30.0
Widowed	3.9	9.0	8.4	5.4	3.3	30.0
Total	39.0	90.0	84.0	54.0	33.0	300.0

• Null hypothesis (independent)→expected frequencies

P(middle,never)=P(middle)P(never)=(39/300)*(90/300) Expected # of (middle,never) = 300*P(middle, never)=39*90/300=11.7

Expected Frequencies for Perfectly Independent Variables

	Middle school or lower	High school	Bachelor's	Master's	PhD or higher	Total
Never married	11.7	27.0	25.2	16.2	9.9	90.0
Married	19.5	45.0	42.0	27.0	16.5	150.0
Divorced	3.9	9.0	8.4	5.4	3.3	30.0
Widowed	3.9	9.0	8.4	5.4	3.3	30.0
Total	39.0	90.0	84.0	54.0	33.0	300.0

https://www.spss-tutorials.com/chi-square-independence-test/

Real data → <u>observed frequencies</u>:

Marital Status by Education | n = 300

	Middle school or lower	High school	Bachelor's	Master's	PhD or higher	Total
Never married	18	36	21	9	6	90
Married	12	36	45	36	21	150
Divorced	6	9	9	3	3	30
Widowed	3	9	9	6	3	30
Total	39	90	84	54	33	300

Add up the differences for each of the 5*4=20 cells

$$\circ \rightarrow \chi_2$$

•
$$X^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

$$\chi^2 = \frac{(18 - 11.7)^2}{11.7} + \frac{(36 - 27)^2}{27} + \dots + \frac{(6 - 5.4)^2}{5.4} = 23.57$$

- Is χ_2 =23.57 a large value?
 - If yes, reject the null hypothesis → A and B are dependent
 - But how to tell if it is a large value?

Pearson established it in 1900. See more.

• Follows Chi-squared distribution with degree of freedom as $(r-1) \times (c-1)$

- In this example, $df = (5-1) \cdot (4-1) = 12$.
 - How to interpret $P(\chi_2 > 23.57) = 0.023$?
 - The probability of ____ under ____ hypothesis is very small, 2.3%.
 - A small p-value basically means that the data are unlikely under the null hypothesis. The convention is to reject the null hypothesis if p < 0.05.
 - Should we reject the null hypothesis in this case?
 Yes!
 - "An association between education and marital status was observed, χ2(12) = 23.57, p = 0.023."

Roadmap

- Frequent Pattern Mining and Association Rules
 - Apriori
 - FP-Growth
 - Association Rules & Pattern Evaluation
- Sequential Pattern Mining
 - GSP
 - PrefixSpan
- Time Series
 - DTW

Basic Concepts

 Given a set of sequences, find the complete set of frequent subsequences

A <u>sequence database</u>

SID	sequence
10	< a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

An element may contain a set of items. Items within an element are unordered and we list them alphabetically.

<a(bc)dc> is a <u>subsequence</u> of <<u>a(abc)(ac)d(cf)></u>

Given <u>support threshold</u> min_sup =2, <(ab)c> is a <u>sequential</u> <u>pattern</u>

GSP—Generalized Sequential Pattern Mining

The Apriori Property of Sequential Patterns

- A basic property: Apriori (Agrawal & Sirkant'94)
 - If a sequence S is not frequent
 - Then none of the super-sequences of **S** is frequent
 - E.g, $\langle hb \rangle$ is infrequent \rightarrow so do $\langle hab \rangle$ and $\langle (ah)b \rangle$

Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Given <u>support threshold</u> min_sup =2

- s_1 and s_2 can join, if dropping first item in s_1 is the same as dropping the last item in s_2
- Examples:
 - <(12)3> join <(2)34> = <(12)34>
 - <(12)3> join <(2)(34)> = <(12)(34)>

GSP: Example

- Initial candidates: all singleton sequences
 - <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan database once, count support for candidates

Seq. ID	Sequence
1	<(cd)(abc)(abf)(acdf)>
2	<(abf)(e)>
3	<(abf)>
4	<(dgh)(bf)(agh)>

Cand	Sup
<a>	
	
<c></c>	
<d></d>	
<e></e>	
<f></f>	
<g></g>	
<h></h>	100

Initial candidates: all singleton sequences

Scan database once, count support for candidates

Seq. ID	Sequence
1	<(cd)(abc)(abf)(acdf)>
2	<(abf)(e)>
3	<(abf)>
4	<(dgh)(bf)(agh)>

Cand	Sup
<a>	4
	4
<c></c>	1
<d></d>	2
<e></e>	1
<f></f>	4
<g></g>	1
<h></h>	1

Seq. ID	Sequence
1	<(cd)(abc)(abf)(acdf)>
2	<(abf)(e)>
3	<(abf)>
4	<(dgh)(bf)(agh)>

Cand	Sup
<a>	4
	4
<d></d>	2
<f></f>	4

 $min_sup = 2$

Length 2 Candidates generated by join

Length 2 Frequent Sequences

Seq. ID	Sequence
1	<(cd)(abc)(abf)(acdf)>
2	<(abf)(e)>
3	<(abf)>
4	<(dgh)(bf)(agh)>

		$min_sup = 2$
Cand	Sup	

Length 2 Candidates generated by join

Length 2 Frequent Sequences

<a>>

<d>

<f>

Seq. ID	Sequence
1	<(cd)(abc)(abf)(acdf)>
2	<(abf)(e)>
3	<(abf)>
4	<(dgh)(bf)(agh)>

Cand	Sup
<a>	4
	4
<d></d>	2
<f></f>	4

 $min_sup = 2$

Length 2 Candidates generated by join

Length 2 Frequent Sequences

 $min_sup = 2$

Length 2 Frequent Sequences

Length 3 Candidates generated by join

Seq. ID	Sequence
1	<(cd)(abc)(abf)(acdf)>
2	<(abf)(e)>
3	<(abf)>
4	<(dgh)(bf)(agh)>

Length 3 Frequent Sequences

Length 4 Candidates generated by join

Length 2 Frequent Sequences

Length 3 Candidates generated by join

```
<ba> and <(ab)> - <b(ab)> {1}
<ba> and <(af)> - <b(af)> {1}
<da> and <(ab)> - <d(ab)> {1}
<da> and <(ab)> - <d(ab)> {1}
<da> and <(af)> - <d(af)> {1}
<db> and <(bf)> - <d(bf)> {1, 4}
<db> and <ba> - <dba> {1, 4}
<df> and <fa> - <dfa> {1, 4}
<df> and <fa> - <dfa> {1, 4}
<fa> and <(ab)> - <f(ab)> -
<fa> and <(ab)> - <f(ab)> -
<fa> and <(ab)> - <(ab)> {1, 2,3}
<(ab)> and <ba> - <(ab)a> {1}
<(ab)> and <fa> - <(ab)a> {1, 4}
```

Seq. ID	Sequence
1	<(cd)(abc)(abf)(acdf)>
2	<(abf)(e)>
3	<(abf)>
4	<(dgh)(bf)(agh)>

 $min_sup = 2$

Length 3 Frequent Sequences

Length 4 Candidates generated by join

Length 2 Frequent Sequences

Length 3 Candidates generated by join

```
<ba> and <(ab)> - <b(ab)> {1}
<ba> and <(af)> - <b(af)> {1}
<da> and <(ab)> - <d(ab)> {1}
<da> and <(ab)> - <d(ab)> {1}
<da> and <(af)> - <d(af)> {1}
<db> and <(bf)> - <d(bf)> {1, 4}
<db> and <ba> - <dba> {1, 4}
<df> and <fa> - <dfa> {1, 4}
<df> and <fa> - <dfa> {1, 4}
<fa> and <(ab)> - <f(ab)> -
<fa> and <(af)> - <f(af)> {1}
<(ab)> and <ba> - <ab> {1, 4}
</a>
```

Seq. ID	Sequence
1	<(cd)(abc)(abf)(acdf)>
2	<(abf)(e)>
3	<(abf)>
4	<(dgh)(bf)(agh)>

 $min_sup = 2$

Length 3 Frequent Sequences

<dba> <dfa> <(abf)> <(bf)a> <d(bf)>

Length 4 Candidates generated by join

https://www.slideshare.net/Krish_ver2/53-mining-sequential-patterns

Length 2 Frequent Sequences

Length 3 Candidates generated by join

```
<ba> and <(ab)> - <b(ab)> {1}
  <ba> and <(af)> - <b(af)> {1}
  <da> and <(ab)> - <d(ab)> {1}
  <da> and <(ab)> - <d(ab)> {1}
  <da> and <(af)> - <d(af)> {1}
  <db> and <(bf)> - <d(bf)> {1, 4}
  <db> and <ba> - <dba> {1, 4}
  <df> and <fa> - <dfa> {1, 4}
  <df> and <fa> - <dfa> {1, 4}
  <fa> and <(ab)> - <f(ab)> -
  <fa> and <(af)> - <f(af)> {1}
  <(ab)> and <ba> - <abf> {1, 2,3}
  <(ab)> and <ba> - <(ab)a> {1}
  <(af)> and <fa> - <(af)a) {1}
  <(af)> and <fa> - <(af)a> {1, 4}
```

Seq. ID	Sequence
1	<(cd)(abc)(abf)(acdf)>
2	<(abf)(e)>
3	<(abf)>
4	<(dgh)(bf)(agh)>

 $min_sup = 2$

Length 3 Frequent Sequences

Length 4 Candidates generated by join

Assume a pre-specified order on items, e.g., alphabetical order

- •<a>, <aa>, <a(ab)> and <a(abc)> are <u>prefixes</u> of sequence <a(abc)(ac)d(cf)>
 - Note <a(ac)> is not a prefix of <a(abc)(ac)d(cf)>
- Given sequence <a(abc)(ac)d(cf)>

Prefix	<u>Suffix</u>
<a>	<(abc)(ac)d(cf)>
<aa></aa>	<(_bc)(ac)d(cf)>
<a(ab)></a(ab)>	<(_c)(ac)d(cf)>

• (_bc) means: the last element in the prefix together with (bc) form one element

- •Given a sequence, α , let α' be subsequence of α
 - α' is called a projection of α w.r.t. **prefix** β , if and only if
 - α' has prefix β , and
 - α' is the maximum subsequence of α with prefix β
 - Example:
 - <ad(cf)> is a projection of <a(abc)(ac)d(cf)> w.r.t. prefix <ad>

SID	sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

PrefixSpan: Example

 $min_sup = 2$

1. Find length-1 sequential patterns:

id	Sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

<a>		<c></c>	<d></d>	<e></e>	<f></f>	<g></g>

 $min_sup = 2$

1. Find length-1 sequential patterns:

id	Sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

<a>		<c></c>	<d></d>	<e></e>	<f></f>	\ g>
4	4	4	3	3	3	1

• 2. Divide search space

id	Sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

• 2. Divide search space

id	Sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

• 3. Find subsets of sequential patterns

<a>		<c></c>	<d></d>	<e></e>	<f></f>	<_f>

• 3. Find subsets of sequential patterns

19 >		<c></c>	₹ \$>	₹ e>	**	(f>
1	2	3	0	1	1	1

• 3. Find subsets of sequential patterns

\3>		<c></c>	√ ¢>	≺e>	**2	(f>
1	2	3	0	1	1	1

<db> <dc>

	<a>	<e></e>	<c></c>

• 3. Find subsets of sequential patterns

Roadmap

- Frequent Pattern Mining and Association Rules
 - Apriori
 - FP-Growth
 - Association Rules & Pattern Evaluation
- Sequential Pattern Mining
 - GSP
 - PrefixSpan
- Time Series
 - DTW

Goal of DTW

Given

- Two sequences (with possible different lengths):
 - $X = \{x_1, x_2, ..., x_N\}$
 - $Y = \{y_1, y_2, ..., y_M\}$
- A local distance (cost) measure between x_n and y_m : $c(x_n, y_m)$

• Goal:

• Find an alignment between X and Y, such that, the overall cost is minimized

DTW: Example

How similar are these two peaked functions

Distance function:

$$C(x, y) = (x - y)^2$$

Reference pattern y[t]

7						
6						
5						
4						
3						
2						
1						
	1	2	3	4	5	6

Distance function:

$$C(x, y) = (x - y)^2$$

Reference pattern y[t]

7	0	0	1	4	1	1	
6	1	1	0	1	0	4	
5	4	4	1	0	1	9	
4	1	1	0	1	0	4	
3	0	0	1	4	1	1	
2	0	0	1	4	1	1	
1	1	1	4	9	4	0	
	1	2	3	4	5	6	

Update rule:

7	0	0	1	4	1	1
6	1	1	0	1	0	4
5	4	4	1	0	1	9
4	1	1	0	1	0	4
3	0	0	1	4	1	1
2	0	0	1	4	1	1
1	1	1	4	9	4	0
	1	2	3	4	5	6

Update rule:

7	0 ->7	0 ->7	1 ->3	4 ->6	1 ->2	1 ->2
6	1 ->7	1 ->7	0 ->2	1 ->2	0 ->1	4 ->5
5	4 ->6	4 ->6	1 ->2	0 ->1	1 ->2	9 ->11
4	1 ->2	1 ->2	0 ->1	1 ->2	0 ->2	4 ->6
3	0 ->1	0 ->1	1 ->2	4 ->6	1 ->7	1 ->8
2	0 ->1	0 ->1	1 ->2	4 ->6	1 ->7	1 ->8
1	1 ->1	1 ->2	4 ->6	9 ->15	4 ->19	0 ->19
	1	2	3	4	5	6

Update rule:

7	0 ->7	0 ->7	1 ->3	4 ->6	1 ->2	1 ->2
6	1 ->7	1 ->7	0 ->2	1 ->2	0 ->1	4 ->5
5	4 ->6	4 ->6	1 ->2	0 ->1	1 ->2	9 ->11
4	1 ->2	1 ->2	0 ->1	1 ->2	0 ->2	4 ->6
3	0 ->1	0 ->1	1 ->2	4 ->6	1 ->7	1 ->8
2	0 ->1	0 ->1	1 ->2	4 ->6	1 ->7	1 ->8
1	1 ->1	1 ->2	4 ->6	9 ->15	4 ->19	0 ->19
	1	2	3	4	5	6

Thank you!

Q & A