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UCLA Roadmap

Engineer Change.

e Announcement
e Decision Tree

e SVM (Part )



UCLA Announcements

Engineer Change.

e Homework 1 due on Oct 30 (Friday) 11:59 PT

o Submit through GradeScope of 1 PDF (2 python file and 1 jupyter notebook into 1
PDF file)

o Assign pages to the questions on GradeScope

e Group formation

o Please email the TA whose session you’re enrolled in for help if you cannot find a
group with 4-5 members.

o You may also find 1 or 2 additional team members if your group has someone who
has dropped the class (before the end of Week 3)



UCLA

Engineer Change.

Decision Boundary

Comparison: Logistic Regression vs Decision Tree

Ground Truth:
Linear Boundary

Ground Truth:
Non-Linear Boundary

Fitted Model:
Linear Model
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UCLA Decision Boundary: Exercise

Engineer Change.

One more question on logistics regression:

Suppose you train a logistic classifier hy(x) = g(6y + 01x; + 6,x,). Suppose
6y = 6,0, = 0,0, = —1. Which of the following figures represents the decision boundary

found by your classifier?

1
ho(x) = g(0"z) = 14 o—07=’



UCLA Decision Boundary: Exercise

Engineer Change.

Suppose you train a logistic classifier hy(x) = g(6y + €1x; + 0,x,). Suppose
6y = 6,0, = 0,0, = —1. Which of the following figures represents the decision boundary
found by your classifier?
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UCLA Decision Tree

Engineer Change.

e Decision Tree Classification: From data to model

Outlook |Temperature Humidity =~ Windy |Play?

sunny hot high false No

sunny hot high true No @
overcast  hot high false Yes /

rain mild high false Yes \finy

rain
overcast

rain cool normal true No ‘
overcast  cool normal true Yes -
sunny mild high false No

S
sunny cool normal false Yes / \

rain cool normal false Yes

rain mild normal false Yes hig st true TS
sunny mild normal true Yes ﬁ a ﬁ
overcast  mild high true Yes
overcast  hot normal false Yes

rain mild high true No




UCLA Decision Tree: Takeaway

Engineer Change.

e (Choosing the Splitting Attribute
e At each node, available attributes are evaluated on the basis of separating

the classes of the training examples.
e A goodness function (information measurement) is used for this purpose:

o Information Gain
o Gain Ratio
o @Gini Index*



UCLA Decision Tree: Attribute Selection

Engineer Change.

e \Which is the best attribute?
o The one which will result in the smallest tree

o Heuristic: choose the attribute that produces the “purest” nodes
e Popular impurity criterion: information gain

o Information gain increases with the average purity of the subsets that an
attribute produces

e Strategy: choose attribute that results in greatest information gain



UCLA Decision Tree: Entropy of Random Variable

Engineer Change.

v 1 with probability p .
| 0 with probability 1-—p 06l

def 0.4 -

H(X)=—plogp—(1-p)log(1—-p) = H(p) s

0 | | | | | | | | |
0O 01 02 03 04 05 06 07 08 09 1

p




UCLA Decision Tree: Attribute Selection

Engineer Change.

e Information in a split with x items of one class, y items of the second class

info([x, y]) = entropy( x , 4
X+y X+Yy
X X y

=~ log(——) ——>—log(——)
xX+y xX+y x+y X+ y




Decision Tree: Example for Practice
Attribute: “Outlook” = “Sunny

e “Outlook” = “Sunny”: 2 and 3 split

3
5

2

info([2,3]) = entropy(2/5,3/5) = —glog(%) — log(%) =0.971bits

outlook

overcast rainy

es . es

zes yes zes

no yes yes

no yes no
yes

no no




UCLA Decision Tree: Example for Practice
Attribute: “Outlook” = “Overcast”

e “Outlook” = “Overcast”: 4/0 split

Note: log(0) is not defined, but
info([4,0]) = entropy(1,0) =—1log(1)|- Olog(O)\z Obits  we evaluate 0*log(0) as zero.

outlook

overcast rainy

Y

es es

ies yes zes

no yes yes

no yes no
yes

no no




Decision Tree: Example for Practice
UCLA Attribute: “Outlook” = “Rainy”

e “Outlook” = “Rainy”:

info([3,2]) = entropy(3/5,2/5) = —%log(%) _2

2
—log(—=) =0.971 bits
5 g(s)

outlook

overcast rainy

Y
yes o yes
yes o yes
no yes yes
no y no
yes
no no




UCLA Decision Tree: Example for Practice
manercinee. EXPECtEd INfOrmation of Attribute “Outlook”

Expected information for attribute:

info([3,2],[4,01,[3,2]) = (5/14)x 0.971+ (4/14)x 0+ (5/14)x 0.971

=0.693 bits



UCLA Compute Information Gain

Information gain:
(information before split) — (information after split)

gain(" Outlook") = info([9,5]) - info([2,3], 4,01, [3,2]) = 0.940 - 0.693
= 0.247 bits

Information gain for attributes from all weather data:

gain("Outlook") = 0.247 bits
gain("Temperature") = 0.029 bits
gain("Humidity") = 0.152 bits
gain("Windy") = 0.048 bits



Decision Tree: Example for Practice
UCLA . .
Engineer Change. Continue to Split




UCLA Final Tree

no“yes‘ ‘yes“no‘

e Note: Not all leaves need to be pure. Sometimes identical instances have
different classes. — Splitting can stop when data can’t be split any further



UCLA Final Tree

e Splitinfo and Gain Ratio

. [D,| . |D,

: |
Splitinfo (D) = - xlog,(—)
| =Dl D

GainRatio(A) = Gain(A) / Splitinfo(A)

e Why Gain Ratio?
o Information gain: biased towards attributes with a large number of values

e Practice: What is the gain ratio for attribute “Outlook” in the previous example?



UCLA Decision Tree: Visual Tutorials

Engineer Change.

e Demo links

o http://www.r2d3.us/visual-intro-to-m IJ
4 . Illl |.||.|........ in
achine-learning-part-1/ . i L
dilhn,.i., T
o http://explained.ai/decision-tree-viz/ ul b b
lu. Fl |'"; L
e Does decision tree also have the o | ) T l
bias-variance trade-off? L
o A visual demo: | | L@ o ‘! O
http://www.r2d3.us/visual-intro-to-ma - £ g ®, ° =] o

chine-learning-part-2/ o [~==| i



http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
http://explained.ai/decision-tree-viz/
http://www.r2d3.us/visual-intro-to-machine-learning-part-2/
http://www.r2d3.us/visual-intro-to-machine-learning-part-2/

UCLA SVM: Visual Tutorials

Engineer Change.

e Links: https://cs.stanford.edu/people/karpathy/svmjs/demo/

Cc=1.0 RBF Kernel sigma = 1.0


https://cs.stanford.edu/people/karpathy/svmjs/demo/

UCLA SVM: Takeaway

Engineer Change.

e Hyperplane separating the data points

)
y if
WX+b=O wab+b-' ®
\
e Maximize margin e, 2 ‘&
2 ®e °
- , N
p ” w ” Hint: what is the distance between

‘xraand wa+b=-1

e Solution by solving its dual problem

w = 2 a;yiX; b= Z (Vk — WTx) /Ny
k:ap#0



UCLA SVM: Start with the margin

Engineer Change.

Margin Lines

wix,+b=1 wix, +b=-1

Distance between parallel lines of ax1+bx2=c1/c2)

ez — a1
d= \
\/m ) wix, +b=1
. T =<1 ©
Margin G e~ S .
AN
.. ®

o+ -(b-1|_ 2

‘ Hint: what is the distance between
_xaand wi'x+b=-1



UCLA SVM: Steps to understand SVM

Engineer Change.

1. Formulation of the Linear SVM problem: maximizing margin

2. Formulation of Quadratic Programming (optimization with linear constraints) —
Primal problem

3. Solving linear SVM problem with “great” math*
a. (Generalized) Lagrange function, lagrange multiplier
b. Identify primal and dual problem (duality) — KKT conditions

c. Solution to w and b regarding alpha
4. Support Vectors, SVM Classifier Inference
5. Non-linear SVM, Kernel tricks



UCLA SVM: Math*

Engineer Change.

e Slides: http://people.csail.mit.edu/dsontag/courses/ml13/slides/lecture6.pdf

e Notes: https://see.stanford.edu/materials/aimlcs229/cs229-notes3.pdf

*To show in hand notes


http://people.csail.mit.edu/dsontag/courses/ml13/slides/lecture6.pdf
https://see.stanford.edu/materials/aimlcs229/cs229-notes3.pdf

UCLA Linear SVM: Example for Practice
o Change. Given labeled data and alpha values

~ Positively labeled data points (1 to 4)
(D)D)} ,

* Negatively labeled data points (5 to 8) T _
1(0):(1)-()() o T o T s w a B

* Alpha values : :
.« @ =|0.25

* a, =|0.25

* g =| 0.5
* Others=0




UCLA Linear SVM: Example for Practice
Engineer Change. Q u eSt i O n S

« Which points are support vectors?
 Calculate normal vector of hyperplane: w

* Calculate the bias term
* What is the decision boundary? : 1 3
* Predict class of new point (4, 1) 8 "_i . B .

-1 @) .
w = Z a;yiX; b= Z (Vi — wxy) /Ny, 7T 2 4
k:ap#0




UCLA

Engineer Change.

Linear SVM: Example for Practice
Predictions for new data

y < sign(w - £ + b)

l Using dual solution

Yy < sign [Z ;yi(Z; - T) + b

N

W = Z QY X4
)
b= Y — W.XL
for any k where C' > a3 > 0

dot product of feature vectors of
new example with support vectors




Linear SVM: Example for Practice
UCLA | P
Engineer Change. P I Ot

.1

. -1

O svs

= hyperplane




UCLA Linear SVM vs Logistic Regression

Engineer Change.

e Decision boundaries?
e |Loss functions?

— Zero-one loss
5 — Hinge loss
— Logistic loss
4
=3
E
~]
5|
1
0—4 —x3 —‘2 —'1 0 1 ‘2 3 4
Y 'f(;t:)

Reading: http://www.cs.toronto.edu/~kswersky/wp-content/uploads/svm_vs_Ir.pdf



http://www.cs.toronto.edu/~kswersky/wp-content/uploads/svm_vs_lr.pdf

UCLA Non-linear SVM

Engineer Change.

- Datasets that are linearly separable (with some noise) work out
great:

¢ 0

- But what are we going to do if the dataset is just too hard?

*—o o—0— *0—0—0—0— 0>
0 X

- How about ... mapping data to a higher-dimensional space:




UCLA Non-linear SVM

Engineer Change.

-General idea: the original feature space
can always be mapped to some higher-

dimensional feature space where the
training set is sw

o fo O e C N s .
f¢] . & - _ . . ® . ) . o




UCLA SVM: Kernel

Engineer Change.

. 1
maximizea ;o — 524 5 QYY1 XiX;

2oy = 0
CZO%’ZO

maximizeq ) ; o5 — %Z@j oYy (X4, X5)
K(x5,%x5) = ®(x;) - P(x;)

>iaiy; =0
OZO@ZO




UCLA SVM: Kernel

Engineer Change.

e The linear SVM relies on an inner product between data vectors,
I &
K(Xi7 Xj) — X Xj

e If every data point is mapped into high-dimensional space via transformation,
the inner product becomes,

T
K(xi,%xj5) = ¢~ (x3) - 9(x;5)
e Do we need to compute ¢(x) explicitly for each data sample? — Directly
compute kernel function K(xi, xj)



UCLA SVM: Kernel Function Example

Engineer Change.

k(x,z) = (x'z+c)’ (Zx c) (Zn:x(f)z“)—i-c)
= ZZQZ —I—ZCZ:U

1=L =1
n

= 3 (@920)(! +Z (V2exD)(V2e2D) +

Jb=1

Feature mapping given by:

B(x) = 202, 20z@ 282 /220 2cz® ocx® (]



UCLA SVM: Kernel Function Example

Engineer Change.

Polynomial kernel of degree : K(X;, X;)=(X;-X; + 1)

2

. . . . - \ I | " 2 o
Gaussian radial basis function kernel : K(X;, Xj)=¢ IXi=%(1" /20

Sigmoid kernel : K(X;, X;) = tanh(xX; - X; — 0)

e Given the same data samples, what is the difference between linear kernel and
non-linear kernel? Is the decision boundary linear (in original feature space)?



UCLA

Engineer Change.

SVM: Demo of different kernels

Linear SVM

RBF SVM

Poly SVM  Sigmoid SVM

<97

RBF SVM

»

Poly SVM




UCLA Non-linear SVM: Example Practice

* Positivelv labeled data points (1 to 4)
(3)(2)(2)(2))

* Negatively labeled data points (5 to 8) D
{(1):(=)-(2)(7)} - - = F

* Non-linear mapping [

» -2
a=% ) if /22 + 23 > 2 -
o(z)=] Vi =
T2

Iy "
otherwise
L2




UCLA Non-linear SVM Example

~ New positively labeled data points (1 to 4)

1(2)(2)(5)(6)} N

* New negatively labeled data points (5 to 8) ‘

1) (2)(3)(7)) y

* Alpha values % I
. -
* al = 2 .vt ° z 6 8 10 R
*as = 1.0 il

* Others=0



UCLA Non-linear SVM Example

« Which points are support vectors?
* Calculate normal vector of hyperplane: w

* Calculate the bias term
* What is the decision boundary? .
* Predict class of new point (4, 5) & . R
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Samueli
UCLA Computer Science

Thank you!

Q&A



