

CS145 Discussion Week 9

Junheng, Shengming, Yunsheng 11/30/2018

- Announcement
- Roadmap
 - Closed Patterns and Max-Patterns
 - Apriori
 - FP-Growth
 - Association Rules & Pattern Evaluation
 - GSP
 - \circ PrefixSpan
- Q & A

Announcement

- Homework 5 due today 23:59pm (Nov 30, 2018)
 - Submit on CCLE
 - Must include your report and Python code.
- Homework 6 is optional
 - We will drop the lowest HW score, i.e. take the best out of the 5 HW assignments

 For the transactional database on the right, let min-sup = 58, point out all the maximal frequent pattern(s) and closed frequent pattern(s). (hint: what if min-sup = 60)

T1 = 2 3 4 79 (without 1)
T2 = 1 3 4 79 (without 2)
: .
: .
: .
: .
T40=1 2 3 4 79 (without 40)
T41= 41 42 43 79
T42= 41 42 43 79
: .
: .
T60= 41 42 43 79

- An itemset X is closed if X is *frequent* and there exists *no super-pattern* Y > X, *with the same support* as X (proposed by Pasquier, et al. @ ICDT'99)
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X (proposed by Bayardo @ SIGMOD'98)
- Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

https://edumine.wordpress.com/2013/09/11/apriori-algorithm-simplified-with-an-example/

Apriori: Example 1

0	Tid	Items Bought
U	1	Milk, Tea, Cake www.T4
	2	Eggs, Tea, Cold Drink
	3	Milk, Eggs, Tea, Cold Drink
	4	Eggs, Cold Drink
	5	Juice www.T4Tute

	Tid	Items Bought	6	Items Bought	Support
U	1	Milk, Tea, Cake WV	ww.T4Tutorials.co	m Milk	2
	2	Eggs, Tea, Cold Drink		Eggs	3
	3	Milk, Eggs, Tea, Cold Drink	\longrightarrow	Tea	3
	4	Eggs, Cold Drink		Cold Drink	3
	5	Juice www.T	4Tutorials com	Juice	1
			4Tutomais.com	Cake	1
			G.	1	NET:

0	Tid	Items Bought	ര	Items Bought	Support
U	1	Milk, Tea, Cake wv	ww.T4Tutorials.co	m Milk	2
	2	Eggs, Tea, Cold Drink		Eggs	3
	3	Milk, Eggs, Tea, Cold Drink	>	Tea	3
	4	Eags, Cold Drink		Cold Drink	3
	5	Juice Juice	ATutorials com	Juice	1
111111			+Tutomais.com	Cako	1
				Cake	1
					3
				Items Bought	3 Support
				Items Bought	3 Support 2
				Items Bought Milk Eggs	3 Support 2 3
				Items Bought Milk Eggs Tea	3 Support 2 3 3

	Tid	Items Bought	0	Items Bought	Support
O	1	Milk, Tea, Cake	ww.T4Tutorials.c	om Milk	2
	2	Eggs, Tea, Cold Drink		Eggs	3
	3	Milk, Eggs, Tea, Cold Drink	<>	Tea	3
	4	Eggs, Cold Drink		Cold Drink	3
	5	Juice unum	T4Tutorials com	Juice	1
052200			a frutomais.com	Cake	1
			4 Items Bought	\downarrow	3
			Milk, Eggs	Items Bought	Support
			Milk, Tea	Milk	2
			Milk, Cold Drink <	Eggs	3
			Eggs, Tea	Tea	3
			Eggs, Cold Drink	Cold Drink	3
			Tea, Cold Drink		

Tid	Item	s Bought		2	Items Bought	Support
	Milk,	Tea, Cake W	ww.T4Tutoria	5.00	m Milk	2
2	Eggs, Te	a, Cold Drink			Eggs	3
3	Milk, Eggs,	Tea, Cold Drink		\rightarrow	Tea	3
4	Eaas,	Cold Drink		- 1	Cold Drink	3
5	551	Juice	ATutorials co		Juice	1
\frown			Fi atomais.co		Cake	1
5			4			~
Items Bought	Support		Items Bought	Ι.	1	3
Milk, Eggs	1		Milk, Eggs		Items Bought	Support
Milk, Tea	2		Milk, Tea		Milk	2
Milk, Cold Drink	1	< N	Ailk, Cold Drink	\leftarrow	Eggs	3
Eggs, Tea	2		Eggs, Tea		Tea	3
Eggs, Cold Drink	3	E	Eggs, Cold Drink		Cold Drink	3
Tea, Cold Drink	2		Toa Cold Drink			

https://t4tutorials.com/apriori-algorithm-in-data-mining-with-examples/

https://t4tutorials.com/apriori-algorithm-in-data-mining-with-examples/

Apriori: Example 2

3	Tid	Items Bought
U	1	Milk, Tea, Cake WW
	2	Eggs, Tea, Cold Drink
	3	Milk, Eggs, Tea, Cold Drink
	4	Eggs, Cold Drink
	5	Juice www

https://t4tutorials.com/apriori-algorithm-in-data-mining-with-examples/

	Tid	Items Bought		Items Bought	Support
9	1	Milk, Tea, Cake WV	vw.T4Tutorials.co	m Milk	2
	2	Eggs, Tea, Cold Drink	2	Eggs	3
	3	Milk, Eggs, Tea, Cold Drink	$ \longrightarrow $	Tea	3
	4	Eggs, Cold Drink		Cold Drink	3
	5	Juice www	.T4Tutorials.com	Juice	1
	201			Cake	1

0	Tid	Items Bought		Items Bought	Support
9	1	Milk, Tea, Cake WV	vw.T4Tutorials.co	m Milk	2
	2	Eggs, Tea, Cold Drink	2	Eggs	3
	3	Milk, Eggs, Tea, Cold Drink		Tea	3
	4	Eggs, Cold Drink		Cold Drink	3
	5	Juice www	.T4Tutorials.com	Juice	1
				Cake	1
				\downarrow	(3)
				Items Bought	Support
				Eggs	3
			-	Tea	3
				Cold Drink	3

https://t4tutorials.com/apriori-algorithm-in-data-mining-with-examples/

https://t4tutorials.com/apriori-algorithm-in-data-mining-with-examples/

https://t4tutorials.com/apriori-algorithm-in-data-mining-with-examples/

https://www.youtube.com/watch?v=gq6nKbye648

UCLA

https://www.youtube.com/watch?v=gq6nKbye648

• What is the misleading problem of it?

UCLA Drawback of the Confidence Measure

Transaction	Support
Canned Beer	10%
Soda	20%
Berries	3%
Male Cosmetics	0.5%

The {beer -> soda} rule has the highest confidence at 20%. However, both beer and soda appear frequently across all transactions, so their association could simply be a fluke. This is confirmed by the lift value of {beer -> soda}, which is 1, implying no association between beer and soda.

Transaction	Support	Confidence	Lift
Canned Beer → Soda	1%	20%	1.0
Canned Beer → Berries	0.1%	1%	0.3
Canned Beer \rightarrow Male Cosmetics	0.1%	1%	2.6

UCLA Drawback of the Confidence Measure

Transaction	Support
Canned Beer	10%
Soda	20%
Berries	3%
Male Cosmetics	0.5%

On the other hand, the {beer -> male cosmetics} rule has a low confidence, due to few purchases of male cosmetics in general.

Transaction	Support	Confidence	Lift
Canned Beer → Soda	1%	20%	1.0
Canned Beer → Berries	0.1%	1%	0.3
Canned Beer \rightarrow Male Cosmetics	0.1%	1%	2.6

UCLA Drawback of the Confidence Measure

Transaction	Support
Canned Beer	10%
Soda	20%
Berries	3%
Male Cosmetics	0.5%

However, whenever someone does buy male cosmetics, he is very likely to buy beer as well, as inferred from a high lift value of 2.6. The converse is true for {beer -> berries}. With a lift value below 1, we may conclude that if someone buys berries, he would likely be averse to beer.

Transaction	Support	Confidence	Lift
Canned Beer → Soda	1%	20%	1.0
Canned Beer → Berries	0.1%	1%	0.3
Canned Beer → Male Cosmetics	0.1%	1%	2.6

•	Lift
	Lift $\{\textcircled{O} \rightarrow \textcircled{V}\} = \frac{\text{Support} \{\textcircled{O}, \textcircled{V}\}}{\text{Support} \{\textcircled{O}\} \times \text{Support} \{\textcircled{V}\}}$
	$lift = \frac{P(A \cup B)}{P(A)P(B)}$
	1: independent
	>1: positively correlated
	<1: negatively correlated

Transaction 1	🗢 🐚 😔 🍗
Transaction 2	🥥 🔰 😔
Transaction 3	O
Transaction 4	<i>i</i>
Transaction 5	🧭 ڬ 🛸
Transaction 5 Transaction 6	🧷 🖻 👄 🍗
Transaction 5 Transaction 6 Transaction 7	

• Question: Are education level and marital status related?

	name marit		educ	
1	Cameron	Never married	PhD or higher	
2	Benjamin	Married	Middle school or lower	
3	Camden	Divorced	Bachelor's	
4	Brody	Widowed	PhD or higher	
5	Connor	Married	PhD or higher	

• Check the contingency table of marital status by education:

Marital Status by Education | n = 300

	Middle school or lower	High school	Bachelor's	Master's	PhD or higher	Total
Never married	18	36	21	9	6	90
Married	12	36	45	36	21	150
Divorced	6	9	9	3	3	30
Widowed	3	9	9	6	3	30
Total	39	90	84	54	33	300

https://www.spss-tutorials.com/chi-square-independence-test/

• Is marital status related to education level and -if so- how?

Marital Status by Education | n = 300

	Middle school or lower	High school	Bachelor's	Master's	PhD or higher	Total
Never married	46%	40%	25%	17%	18%	30%
Married	31%	40%	54%	67%	64%	50%
Divorced	15%	10%	11%	6%	9%	10%
Widowed	8%	10%	11%	11%	9%	10%
Total	100%	100%	100%	100%	100%	100%

https://www.spss-tutorials.com/chi-square-independence-test/

• Highly educated respondents \rightarrow marry more often than less educated

Marital Status by Education | n = 300

	Middle school or lower	High school	Bachelor's	Master's	PhD or higher	Total
Never married	46%	40%	25%	17%	18%	30%
Married	31%	40%	54%	67%	64%	50%
Divorced	15%	10%	11%	6%	9%	10%
Widowed	8%	10%	11%	11%	9%	10%
Total	100%	100%	100%	100%	100%	100%

• Marital status is clearly associated with education level.

Marital Status by Education Level | N = 300

- The *null hypothesis* for a chi-square independence test is that
 - two categorical variables are *independent* in some population.

Marital Status by Education Level | N = 300

• Statistical independence means that

• the frequency distribution of a variable is the same for all levels of some other variable.

Marital Status by Education Level | N = 300

• Expected frequencies are

• the frequencies we expect in our sample if the *<u>null hypothesis</u>* holds.

Expected Frequencies for Perfectly Independent Variables

	Middle school or lower	High school	Bachelor's	Master's	PhD or higher	Total
Never married	11.7	27.0	25.2	16.2	9.9	90.0
Married	19.5	45.0	42.0	27.0	16.5	150.0
Divorced	3.9	9.0	8.4	5.4	3.3	30.0
Widowed	3.9	9.0	8.4	5.4	3.3	30.0
Total	39.0	90.0	84.0	54.0	33.0	300.0

Chi-Square Test

<u>Assuming independence</u>
 <u>(null hypothesis)</u>

P(middle,never)=P(middle)P(never)=(39/300)*(90/300) Expected # of (middle,never) = 300*P(middle,never)=39*90/300=11.7

Expected Frequencies for Perfectly Independent Variables

	Middle school or lower	High school	Bachelor's	Master's	PhD or higher	Total
Never married	11.7	27.0	25.2	16.2	9.9	90.0
Married	19.5	45.0	42.0	27.0	16.5	150.0
Divorced	3.9	9.0	8.4	5.4	3.3	30.0
Widowed	3.9	9.0	8.4	5.4	3.3	30.0
Total	39.0	90.0	84.0	54.0	33.0	300.0

Chi-Square Test

- Assuming independence,
- <u>→ expected frequencies</u>

P(middle,never)=P(middle)P(never)=(39/300)*(90/300) Expected # of (middle,never) = 300*P(middle,never)=39*90/300=11.7

Expected Frequencies for Perfectly Independent Variables

	Middle school or lower	High school	Bachelor's	Master's	PhD or higher	Total
Never married	11.7	27.0	25.2	16.2	9.9	90.0
Married	19.5	45.0	42.0	27.0	16.5	150.0
Divorced	3.9	9.0	8.4	5.4	3.3	30.0
Widowed	3.9	9.0	8.4	5.4	3.3	30.0
Total	39.0	90.0	84.0	54.0	33.0	300.0

- Real data
- → <u>observed frequencies</u>:

Marital Status by Education | n = 300

	Middle school or lower	High school	Bachelor's	Master's	PhD or higher	Total
Never married	18	36	21	9	6	90
Married	12	36	45	36	21	150
Divorced	6	9	9	3	3	30
Widowed	3	9	9	6	3	30
Total	39	90	84	54	33	300

Chi-Square Test

• Add up the differences for each of the 5*4=20 cells

 $\circ \rightarrow \chi_2$

•
$$X^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

$$\chi^2 = \frac{(18 - 11.7)^2}{11.7} + \frac{(36 - 27)^2}{27} + \ldots + \frac{(6 - 5.4)^2}{5.4} = 23.57$$

Chi-Square Test

• Is χ_2 =23.57 a large value?

- \circ If yes, reject the null hypothesis \rightarrow A and B are dependent
- But how to tell if it is a large value?

Pearson established it in 1900. <u>See more</u>.

• What is a chi-squared distribution?

Definition [edit]

If $Z_1, ..., Z_k$ are independent, standard normal random variables, then the sum of their squares,

$$Q \ = \sum_{i=1}^k Z_i^2,$$

is distributed according to the chi-squared distribution with *k* degrees of freedom. This is usually denoted as

 $Q ~\sim~ \chi^2(k) ~{
m or}~ Q ~\sim~ \chi^2_k.$

The chi-squared distribution has one parameter: k, a positive integer that specifies the number of degrees of freedom (the number of Z_i 's).

UCLA Sampling Distribution vs Population Distribution

https://slideplayer.com/slide/5775066/

Draw observations at random from any population with finite mean μ . The **law of large numbers** says that as the number of observations drawn increases, the sample mean of the observed values gets closer and closer to the mean μ of the population.

The **population distribution** of a variable is the distribution of values of the variable among all individuals in the population.

The **sampling distribution** of a statistic is the distribution of values taken by the statistic in all possible samples of the same size from the same population.

UCLA Sampling Distribution vs Population Distribution

Sample means and sums are always normally distributed (approximately) for reasonable sample sizes, say n > 30. This doesn't depend on whatever population distribution the data values may or may not follow.* This phenomenon is known as the central limit theorem.

SAMPLING DISTRIBUTION MEANS

https://www.spss-tutorials.com/sampling-distribution-what-is-it/

- In this example,
 - \circ What is the sampling distribution of χ_2 ?
 - Under what assumptions does the above hold?

Chi-Square Test

- In this example,
 - What is the sampling distribution of χ_2 ? χ_2 follows a χ_2 distribution.
 - Under what assumptions does the above hold? Independent observations, etc.

- In this example, $df = (5-1) \cdot (4-1) = 12$.
 - How to interpret $P(\chi_2>23.6)=0.023?$
 - The probability of _____ under _____ assumptions is very small, 2.3%.
 - A small p-value basically means that the data are unlikely under some null hypothesis. A somewhat arbitrary convention is to reject the null hypothesis if p < 0.05.
 - Should we reject the null hypothesis in this case? Yes!
 - <u>"An association between education</u> and marital status was observed, <u>χ2(12) = 23.57, p = 0.023."</u>

https://www.spss-tutorials.com/chi-square-independence-test/ https://www.spss-tutorials.com/statistical-significance/

- Lift and χ^2 are affected by null-transaction
 - E.g., number of transactions that do not contain milk nor coffee

Why?

UCLA Summary: Conceptual Understanding

- What are <u>hypothesis testing</u>, <u>p-value</u>, and <u>significance level</u>?
 - *Hypothesis testing* is the use of statistics to determine the probability that a given hypothesis is true. The usual process of hypothesis testing consists of four steps.
 - Formulate the null hypothesis H_0 (commonly, that the observations are the result of pure chance) and the alternative hypothesis H_a (commonly, that the observations show a real effect combined with a component of chance variation).
 - Identify a test statistic that can be used to assess the truth of the null hypothesis.
 - Compute the <u>p-value</u>, which is the probability of obtaining an effect at least as extreme as the one in the sample data assuming that the null hypothesis were true. The smaller the p-value, the stronger the evidence against the null hypothesis.
 - Compare the p-value to an acceptable <u>significance value (level</u>) α. If p<=α, that the observed effect is statistically significant, the null hypothesis is ruled out, and the alternative hypothesis is valid.</p>

http://mathworld.wolfram.com/HypothesisTesting.html

http://blog.minitab.com/blog/adventures-in-statistics-2/understanding-hypothesis-tests-significance-levels-alpha-and-p-values-in-statistics http://www.stat.yale.edu/Courses/1997-98/101/sigtest.htm

Summary: Conceptual Questions

• In the previous example,

UCLA

- What is the null hypothesis?
- What is the test statistics?
- What is the p-value?
- What is the significance level?
- What is the conclusion?

- In the previous example,
 - What is the null hypothesis? There is <u>**no</u>** association between the two variables.</u>
 - \odot What is the test statistics? $\chi 2=23.6$
 - What is the p-value? $P(\chi_2>23.6)=0.023$
 - What is the significance level? 0.05
 - What is the conclusion? There is an association between the two variables.

UCLA Sequential Pattern Mining: Applications

Example: DNA Sequence

SYNTENIC ASSEMBLIES FOR CG15386

MD106	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
NEWC	ATGCTTAGTAATCCTTACTTTAAATCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
W501	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
MD199	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
C1674	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
SIM4	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
MD106	CTACGGCCTAATGGTGCTAACAGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
NEWC	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
W501	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
MD199	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
C1674	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
SIM4	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
MD106	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
NEWC	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
W501	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
MD199	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
C1674	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
SIM4	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
MD106	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
NEWC	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCATCGGCCGAGAAATAG
W501	CTGCAGGAGGCGTCCACCACCACCACCCCAATCTACAGGTCATCGGCCGAGAAATAG
MD199	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
C1674	CTGCAGGAGGCGTCCACCACCAGTGCCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
SIM4	CTGCAGGAGGCGTCCACCACCAGTGCCCCCAATCTACAGGTCAGCGGCCGAGAAATAG

Music: midi files

https://www.cse.wustl.edu/~jain/cse571-07/ftp/ids/index.html#sec2

Cand Sup

<g>

<h>

- Initial candidates: all singleton sequences
 - □ <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan database once, count support for candidates

Seq. ID	Sequence	<a:< td=""></a:<>
1	<(cd)(abc)(abf)(acdf)>	<b< td=""></b<>
2	<(abf)(e)>	<c></c>
3	<(abf)>	<d></d>
4	<(dgh)(bf)(agh)>	<e></e>
		<f></f>

- Initial candidates: all singleton sequences
 - □ <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan database once, count support for candidates

Seq. ID	Sequence
1	<(cd)(abc)(abf)(acdf)>
2	<(abf)(e)>
3	<(abf)>
4	<(dgh)(bf)(agh)>

Cand	Sup
<a>	4
	4
<c></c>	1
<d></d>	2
<6>	1
<f></f>	4
<g></g>	1
<h></h>	1

eq. ID	Sequence	Cand	Sup
1	<(cd)(abc)(abf)(acdf)>	<a>	4
2	<(abf)(e)>		4
3	<(abf)>	<d></d>	2
4	<(dgh)(bf)(agh)>	<f></f>	4
ength 2.	Candidates generated by join	Length 2	2 Freque

GSP

Seq. ID	Sequence	Cand	Sup
1	<(cd)(abc)(abf)(acdf)>	<a>	4
2	<(abf)(e)>		4
3	<(abf)>	<d></d>	2
4	<(dgh)(bf)(agh)>	<f></f>	4

Length 2 Candidates generated by join

<aa> <ab> <ad> <af> <ba> <bb> <bd> <bd> <bf> <da> <db><dd> <df> <fa> <fb> <fd> <ff> <(ab)> <(ad)> <(af)> <(bd)> <(bf)> <(df)>

Length 2 Frequent Sequences

GSP

Seq. ID	Sequence	Cand
1	<(cd)(abc)(abf)(acdf)>	<a>
2	<(abf)(e)>	
3	<(abf)>	<d></d>
4	<(dgh)(bf)(agh)>	<f></f>

Length 2 Candidates generated by join

<aa> <ab> <ad> <af> <ba> <bb> <bd> <bd> <bf> <da> <db> <dd> <df> <fa> <fb> <fd> <ff> <(ab)> <(ad)> <(af)> <(bd)> <(bf)> <(df)> <ba> <da> <db> <df> <fa> <(ab)> <(af)> <(bf)>

Length 2 Frequent Sequences

Sup

4

4

2

4

UCLA

	Seq. ID	Sequence
Length 2 Frequent Sequences	1	<(cd)(abc)(abf)(acdf)>
<ba> <da> <db> <df> <fa></fa></df></db></da></ba>	2	<(abf)(e)>
<(ab)> <(af)> <(bf)>	3	<(abf)>
Length 3 Candidates generated by join	4	<(dgh)(bf)(agh)>
	Length 4 (Candidates generated by jo
	Construction to the second	

	Seq. ID	Sequence
Length 2 Frequent Sequences	1	<(cd)(abc)(abf)(acdf)>
<ba> <da> <db> <df> <fa></fa></df></db></da></ba>	2	<(abf)(e)>
<(ab)> <(af)> <(bf)>	3	<(abf)>
Length 3 Candidates generated by join	4	<(dgh)(bf)(agh)>
<ba> and <(ab)> - <b(ab)> {1} <ba> and <(af)> - <b(af)> {1}</b(af)></ba></b(ab)></ba>		
<da> and <(ab)> - <d(ab)> {1}</d(ab)></da>	Length 3 Frequent Sequences	
<da> and <(at)> - <d(at)> {1} <db> and <(bf)> - <d(bf)> {1, 4}</d(bf)></db></d(at)></da>		
 db> and <ba> - <dba> {1, 4}</dba></ba>		
<df> and <fa> - <dfa> {1, 4}</dfa></fa></df>		
<pre><fa> and <(ab)> - <f(ab)> - </f(ab)></fa></pre>	Length 4 (Candidates generated by jo
<(ab)> and <(bf)> - <(abf)> {1,2,3}		
<(ab)> and <ba> - <(ab)a> {1}</ba>		
<(af)> and <fa> - <(af)a) {1}</fa>		
<(bf)> and <fa> - <(bf)a> {1, 4}</fa>		

	Seq. ID	Sequence
Length 2 Frequent Sequences	1	<(cd)(abc)(abf)(acdf)>
<ba> <da> <db> <df> <fa> <(ab)> <(af)> <(bf)></fa></df></db></da></ba>	2	<(abf)(e)>
	3	<(abf)>
Length 3 Candidates generated by join	4	<(dgh)(bf)(agh)>
$\langle ba \rangle$ and $\langle (ab) \rangle - \langle b(ab) \rangle \{1\}$		
<pre><da> and <(a)> - <d(a)> {1}</d(a)></da></pre>	Length 3 Frequent Sequences <dba> <dfa> <(abf)> <(bf)a> <d(bf)></d(bf)></dfa></dba>	
<da> and <(af)> - <d(af)> {1} <db> and <(bf)> - <d(bf)> {1, 4} <db> and <ba> - <dba> {1, 4}</dba></ba></db></d(bf)></db></d(af)></da>		
<pre><dt> and <ta> - <dta> {1, 4} <fa> and <(ab)> - <f(ab)> - <fa> and <(af)> - <f(af)> {1} <(ab)> and <(bf)> - <(abf)> {1,2,3} <(ab)> and <ba> - <(ab)a> {1} <(af)> and <fa> - <(af)a) {1}</fa></ba></f(af)></fa></f(ab)></fa></dta></ta></dt></pre>	Length 4 (Candidates generated by jo

	Seq. ID	Sequence	
Length 2 Frequent Sequences	1	<(cd)(abc)(abf)(acdf)>	
<ba> <da> <db> <df> <fa></fa></df></db></da></ba>	2	<(abf)(e)>	
<(ab)> <(af)> <(bf)>	3	<(abf)>	
Length 3 Candidates generated by join	4	<(dgh)(bf)(agh)>	
	Length <dba> <df< td=""><td colspan="2">Length 3 Frequent Sequences <dba> <dfa> <(abf)> <(bf)a> <d(bf)></d(bf)></dfa></dba></td></df<></dba>	Length 3 Frequent Sequences <dba> <dfa> <(abf)> <(bf)a> <d(bf)></d(bf)></dfa></dba>	
<fa> and <(af)> - <f(af)> {1} <(ab)> and <(bf)> - <(abf)> {1,2,3} <(ab)> and <ba> - <(ab)a> {1} <(af)> and <fa> - <(af)a) {1} <(bf)> and <fa> - <(af)a) {1}</fa></fa></ba></f(af)></fa>	<d(bf)> and <(bf)a> - <d(bf)a> {1, 4} <(abf)> and <(bf)a> - <(abf)a> {1}</d(bf)a></d(bf)>		

GSP

https://fenix.tecnico.ulisboa.pt/downloadFile/1407993358847907/licao_8.pdf

Thank you!

Q & A