

CS145 Discussion Week 3

Junheng, Shengming, Yunsheng 10/19/2018

• Announcements

- HW1 due Oct 19, 2018 (Friday, tonight)
- Package your Report AND codes, README together and submit it through CCLE

• Review:

- Decision Tree
 - Information Gain
 - Gain Ratio
 - Gini Index
- SVM
 - Linear SVM
 - Soft Margin SVM
 - Non-linear SVM

Decision Tree

• Decision Tree Classification

• Example: Play or Not?

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

Decision Tree

- Choosing the Splitting Attribute
- At each node, available attributes are evaluated on the basis of separating the classes of the training examples.
- A Goodness function is used for this purpose:
 - Information Gain
 - Gain Ratio
 - Gini Index

- Which is the best attribute?
 - The one which will result in the smallest tree
 - Heuristic: choose the attribute that produces the "purest" nodes
- Popular *impurity criterion*: *information gain*
 - Information gain increases with the average purity of the subsets that an attribute produces
- Strategy: choose attribute that results in greatest information gain

UCLA Entropy of a split

Information in a split with x items of one class, y items of the second class

$$info([x, y]) = entropy(\frac{x}{x+y}, \frac{y}{x+y})$$
$$= -\frac{x}{x+y} \log(\frac{x}{x+y}) - \frac{y}{x+y} \log(\frac{y}{x+y})$$

UCLA Example: attribute "Outlook"

"Outlook" = "Sunny": 2 and 3 split

info([2,3]) = entropy(2/5,3/5) =
$$-\frac{2}{5}\log(\frac{2}{5}) - \frac{3}{5}\log(\frac{3}{5}) = 0.971$$
 bits

UCLA Outlook = Overcast

"Outlook" = "Overcast": 4/0 split

$$info([4,0]) = entropy(1,0) = -1log(1) - 0log(0) = 0 bits$$

Note: log(0) is not defined, but we evaluate 0*log(0) as zero

UCLA Outlook = Rainy

• "Outlook" = "Rainy":

info([3,2]) = entropy(3/5,2/5) =
$$-\frac{3}{5}\log(\frac{3}{5}) - \frac{2}{5}\log(\frac{2}{5}) = 0.971$$
 bits

Expected information for attribute:

 $info([3,2],[4,0],[3,2]) = (5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971$

= 0.693 bits

The final decision tree

 Note: not all leaves need to be pure; sometimes identical instances have different classes

 \Rightarrow Splitting stops when data can't be split any further

Information gain:

(information before split) – (information after split)

gain("Outlook") = info([9,5]) - info([2,3],[4,0],[3,2]) = 0.940 - 0.693= 0.247 bits

Information gain for attributes from weather data:

```
gain("Outlook") = 0.247 bits
```

gain("Temperature") = 0.029 bits

gain("Humidity") = 0.152 bits

gain("Windy") = 0.048 bits

UCLA Continuing to split

UCLA The final decision tree

 Note: not an leaves need to be pure; sometimes identical instances have different classes

 \Rightarrow Splitting stops when data can't be split any further

Decision Tree

Gain Ratio

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

Gain Ratio = Gain_A(D) / SplitInfo_A(D)

Why Gain Ratio?

Unbiased compared with Information Gain

Why? (https://stats.stackexchange.com/questions/306456/how-is-information-gain-biased)

Decision Tree

•Is the decision boundary for decision tree linear? No

Visual Tutorials of Decision Trees

https://algobeans.com/2016/07/27/decision-trees-tutorial/

Root Node

Hyperplane separating the data points

 $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$

Maximize margin $\rho = \frac{2}{\|w\|}$

Solution

$$\boldsymbol{w} = \sum \alpha_i y_i \mathbf{x}_i$$
 $b = \sum_{k:\alpha_k \neq 0} (y_k - \boldsymbol{w}^T \mathbf{x}_k) / N_k$

Margin Formula

Margin Lines

$$w^T \mathbf{x}_a + \mathbf{b} = 1$$
 $w^T \mathbf{x}_b + \mathbf{b} = -1$

Distance between parallel lines

$$d=\frac{|c_2-c_1|}{\sqrt{a^2+b^2}}$$

Margin

$$\rho = \frac{|(b+1) - (b-1)|}{\|w\|} = \frac{2}{\|w\|}$$

• Positively labeled data points (1 to 4) $\left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \end{pmatrix}, \begin{pmatrix} 6 \\ 1 \end{pmatrix}, \begin{pmatrix} 6 \\ -1 \end{pmatrix} \right\}$

• Negatively labeled data points (5 to 8)

$\left\{ \left(\begin{array}{c} 1 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ 1 \end{array}\right), \left(\begin{array}{c} 0 \\ -1 \end{array}\right), \left(\begin{array}{c} -1 \\ 0 \end{array}\right) \right\}$

- Alpha values
 - $\alpha_1 = 0.75$
 - $\alpha_2 = 0.75$
 - $\alpha_5 = 3.5$
 - Others = 0

- Which points are support vectors?
- Calculate normal vector of hyperplane: \boldsymbol{w}
- Calculate the bias term
- What is the decision boundary?
- Predict class of new point (4, 1)

$$\boldsymbol{w} = \sum \alpha_i y_i \mathbf{x}_i$$
 $b = \sum_{k:\alpha_k \neq 0} (y_k - \boldsymbol{w}^T \mathbf{x}_k) / N_k$

• Positively labeled data points (1 to 4) $\left\{ \left(\begin{array}{c} 2\\ 2 \end{array}\right), \left(\begin{array}{c} -2\\ -2 \end{array}\right), \left(\begin{array}{c} -2\\ -2 \end{array}\right), \left(\begin{array}{c} -2\\ -2 \end{array}\right) \right\}$

• Negatively labeled data points (5 to 8) $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$

Non-linear mapping

$$\Phi_1 \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left\{ \begin{array}{ccc} \left(\begin{array}{c} 4 - x_2 \\ 4 - x_1 \\ x_1 \\ x_2 \end{array} \right) & \text{if } \sqrt{x_1^2 + x_2^2} > 2 \\ \text{otherwise} \end{array} \right.$$

- New positively labeled data points (1 to 4) $\left\{ \begin{pmatrix} 2\\2 \end{pmatrix}, \begin{pmatrix} 6\\2 \end{pmatrix}, \begin{pmatrix} 6\\6 \end{pmatrix}, \begin{pmatrix} 2\\6 \end{pmatrix} \right\}$
- New negatively labeled data points (5 to 8)

 $\left\{ \left(\begin{array}{c} 1\\1\end{array}\right), \left(\begin{array}{c} 1\\-1\end{array}\right), \left(\begin{array}{c} -1\\-1\end{array}\right), \left(\begin{array}{c} -1\\1\end{array}\right) \right\}$

- Alpha values
 - $\alpha_1 = 4$
 - $\alpha_5 = 7$
 - Others = 0

- Which points are support vectors?
- Calculate normal vector of hyperplane: \boldsymbol{w}
- Calculate the bias term
- What is the decision boundary?
- Predict class of new point (4, 5)

Visualize Tutorials of Decision Trees

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

http://explained.ai/decision-tree-viz/

Visual Tutorials of SVM

https://cs.stanford.edu/people/karpathy/svmjs/demo/

Thank you!

Q & A